Advertisement

Journal of Materials Science

, Volume 43, Issue 11, pp 3873–3880 | Cite as

The pre-wetting transition at antiphase boundaries: an atomistic modeling study of Ni3Al

  • Chandler Amiss Becker
  • Yuri Mishin
  • William J. Boettinger
Intergranular and Interphase Boundaries in Materials

Abstract

Using an embedded-atom model for Ni–Al alloys, we have examined interfacial properties of the Ni/Ni3Al system, concentrating on properties of the antiphase boundaries. These interfaces between domains of the γ′ phase can undergo a pre-wetting transition as the region of the antiphase boundaries disorders and then transforms into a metastable γ phase. In order to understand more about this transition, we have performed detailed thermodynamic, compositional, and structural analyses of this system using semi-grand canonical Monte-Carlo simulations, with particular interest in composition profiles and segregation. We will discuss our studies in the context of previous treatments of these interfaces.

Keywords

Ni3Al Bulk Composition Antiphase Boundary Cluster Variation Method Simulation Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

C. B. would like to thank the NIST-NRC postdoctoral research associateship program for research support and J. E. Guyer for helpful discussions. Y. M. acknowledges the support of the U. S. Department of Energy, Office of Basic Energy Sciences.

References

  1. 1.
    Pope DP (1996) Physical metallurgy, vol 3, chap 24. Elsevier/North-Holland, Amsterdam, p 207Google Scholar
  2. 2.
    Massalski TB (eds) (1986) Binary alloy phase diagrams. ASM, Materials Park, OHGoogle Scholar
  3. 3.
    Sims CT, Stoloff NS, Hagel WC (eds) (1987) Superalloys II–high-temperature materials for aerospace and industrial applications. Wiley, New YorkGoogle Scholar
  4. 4.
    Pollock TM, Kissinger RD, Bowman RR, Green KA, McLean M, Olson SL, Schirra JJ (eds) (2000) Superalloys. TMS, WarrendaleGoogle Scholar
  5. 5.
    Yoo MH, Daw MS, Baskes MI (1989) In: Vitek V, Srolovitz DJ (eds) Atomistic simulation of materials: beyond pair potentials. Plenum Press, New York, 1989, p 401Google Scholar
  6. 6.
    Pasianot R, Farkas D, Savino EJ (1991) J Phys III 1:997CrossRefGoogle Scholar
  7. 7.
    Vitek V, Ackland GJ, Cserti J (1991) Phase stability and design. In: Giamei P, Pope DP (eds) MRS Symp Proc, vol 186, pp 237–251Google Scholar
  8. 8.
    Vitek V, Pope DP, Bassani JL (1996) In: Nabarro FRN, Duesbery MS (eds) Dislocations in solids, vol 10, chap 51. Elsevier/North-Holland, Amsterdam, p 136Google Scholar
  9. 9.
    Wen M, Li S (1998) Acta Mater 46:4351CrossRefGoogle Scholar
  10. 10.
    Kikuchi R, Cahn JW (1979) Theory of interphase and antiphase boundaries in F.C.C. alloys. Acta Metall 7:1337CrossRefGoogle Scholar
  11. 11.
    Finel A, Mazauric V, Ducastelle F (1990) Theoretical study of antiphase boundaries in fcc alloys. Phys Rev Lett 65:1016CrossRefGoogle Scholar
  12. 12.
    Sluiter M, Kawazoe Y (1998) A study of the thermodynamics of segregation and partial order at (111) antiphase boundaries in Ni3Al. Philos Mag A 78:1353CrossRefGoogle Scholar
  13. 13.
    Mishin Y (2004) Atomistic modeling of the γ and γ′-phases of the Ni–Al system. Acta Mater 52:1451CrossRefGoogle Scholar
  14. 14.
    Braun RJ, Cahn JW, McFadden GB, Wheeler AA (1997) Anisotropy of interfaces in an ordered alloy: a multiple-order-parameter model. Phil Trans R Soc Lond A 355:1787CrossRefGoogle Scholar
  15. 15.
    Wang Y, Banerjee D, Su CC, Khachaturyan AG (1998) Field kinetic model and computer simulation of precipitation of L12 ordered intermetallics from F.C.C. solid solution. Acta Mater 46:2983CrossRefGoogle Scholar
  16. 16.
    Ma Y, Ardell AJ (2005) Coarsening of γ (Ni-Al solid solution) precipitates in a γ′ (Ni3Al) matrix; a striking contrast in behavior from normal γ/γ′ alloys. Scripta Mater 52:1335CrossRefGoogle Scholar
  17. 17.
    Foiles SM, Daw MS (1987) Application of the embedded atom method to Ni3Al. J Mater Res 2:5CrossRefGoogle Scholar
  18. 18.
    Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, San DiegoGoogle Scholar
  19. 19.
    Cahn JW, Hilliard JE (1959) Free energy of a nonuniform system. 3. nucleation in a 2-component incompressible fluid. J Chem Phys 31:688CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chandler Amiss Becker
    • 1
  • Yuri Mishin
    • 2
  • William J. Boettinger
    • 1
  1. 1.Metallurgy DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Physics DepartmentGeorge Mason UniversityFairfaxUSA

Personalised recommendations