Skip to main content
Log in

Electrorheological properties and creep behavior of polyindole/poly(vinyl acetate) composite suspensions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, electrorheological (ER) properties of polyindole (PIN) and polyindole/poly (vinyl acetate), (PIN/PVAc) conducting composites having different compositions were investigated. Conductivities and dielectric properties of these composites were determined. The particle sizes of the composites were determined by dynamic light scattering method. Suspensions of PIN and PIN/PVAc composites were prepared in silicone oil, at several concentrations (c = 5–25%, m/m) and their sedimentation stabilities were determined. Then the effects of dispersed particle concentration, shear rate, electric field strength, frequency, and temperature onto ER activities of suspensions were investigated. The flow times of these suspensions at various dc electric field strengths were measured. Further, creep tests were applied to the composite suspensions and a reversible viscoelastic deformation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hasley TC, Torr W (1990) Phys Rev Lett 65:2820

    Article  Google Scholar 

  2. Edali M, Esmail MN (1997) J Appl Polym Sci 79:1787

    Article  Google Scholar 

  3. Hao T (2002) Adv Coll Interface Sci 97:1

    Article  CAS  Google Scholar 

  4. Xu YL, Qu WL, Ko JM (2000) Earthquake Eng Struct Dyn 29(5):557

    Article  Google Scholar 

  5. Weiss KD, Carlson JD, Coulter JP (1993) J Intell Mater Syst Struct 4:13

    Article  Google Scholar 

  6. Pavlinek V, Quadrat O (1999) Colloids Surf A Physicochem Eng Asp 155:241

    Article  CAS  Google Scholar 

  7. Choi HJ, Cho MS, Jhon MS (1997) Polym Adv Technol 8:697

    Article  CAS  Google Scholar 

  8. Lengalova A, Pavlinek V, Saha P, Quadrat O, Kitano T, Stejskal J (2003) Eur Polym J 39:641

    Article  CAS  Google Scholar 

  9. Sahin D, Sari B, Unal HI (2002) Turk J Chem 26:113

    CAS  Google Scholar 

  10. Cho MS, Choi HJ, To K (1988) Physica A 254:272

    Article  Google Scholar 

  11. Yilmaz H, Degirmenci M, Unal HI (2006) J Coll Interface Sci 293:489

    Article  CAS  Google Scholar 

  12. Yavuz M, Unal HI, Yildirir Y (2001) Turk J Chem 25:19

    CAS  Google Scholar 

  13. Otsubo Y, Edamura K (1994) J Coll Interface Sci 168(1):203

    Article  Google Scholar 

  14. Block H, Kelly JP (1988) J Phys D Appl Phys 21:1661

    Article  CAS  Google Scholar 

  15. Cho MS, Choi HJ, Chin IJ, Ahn WS (1999) Microporous Mesoporous Mater 32:233

    Article  CAS  Google Scholar 

  16. Lu J, Zhao X (2005) Int J Mod Phys B 16(17–18):2521

    Google Scholar 

  17. Yoon DJ, Kim YD (2006) J Coll Interface Sci 303:573

    Article  CAS  Google Scholar 

  18. Raghavan J, Meshiib M (2003) Compos Sci Technol 57:375

    Article  Google Scholar 

  19. Eraldemir Ö, Sari B, Gok A, Unal HI (2007) J Macromol Sci Part A Pure and Appl Chem Edn A 45(3) (in press)

  20. German RM (1994) In: Powder metallurgy science: material powder industries separation. Princeton, p 28

  21. Chwang CP, Liu CD, Huang SW, Chao DY, Lee SN (2004) Synthetic Met 142(1–3):275

    Article  CAS  Google Scholar 

  22. Uemura T, Minagava K, Takimato J, Koyama K (1995) J Chem Soc Faraday Trans 91(6):1051

    Article  CAS  Google Scholar 

  23. Rejon LA, Ramirez F, Paz FM, Goycoolea FM, Valdez MA (2002) Carbohydr Polym 48:413

    Article  CAS  Google Scholar 

  24. Unal HI, Yilmaz H (2002) J Appl Polym Sci 86:1106

    Article  CAS  Google Scholar 

  25. Zhao XP, Duan X (2002) Mater Lett 54:348

    Article  CAS  Google Scholar 

  26. Dong P, Wang C, Zhao S (2005) Fuel 84:685

    Article  CAS  Google Scholar 

  27. Unal HI, Agirbas O, Yilmaz H (2006) Colloids Surf A Physicochem Eng Asp 274:77

    Article  CAS  Google Scholar 

  28. Yilmaz H, Unal HI, Yavuz M (2005) Colloid J 67(2):268

    Article  Google Scholar 

  29. Wu S, Shen J (1996) J Appl Polym Sci 60:2159

    Article  CAS  Google Scholar 

  30. Gercek B, Yavuz M, Yilmaz H, Sari B, Unal HI (2007) Colloids Surf A Physicochem Eng Asp 299:124

    Article  CAS  Google Scholar 

  31. Tian Y, Meng Y, When S (2003) Mater Lett 57:2807

    Article  CAS  Google Scholar 

  32. Unal HI, Yavuz M, Yilmaz H (2001) Gazi Univ J Sci 14:999

    Google Scholar 

  33. Parthasarathy M, Klingenberg DJ (1996) Mater Sci Eng R 17:57

    Article  Google Scholar 

  34. Conrad H, Chen Y (1970) Progress in electrorheology. Plenum Press, New York, p 55

  35. Davis LC (1992) Appl Phys Lett 60:319

    Article  Google Scholar 

  36. Lu J, Zhao X (2004) J Coll Interface Sci 273:654

    Article  Google Scholar 

  37. Lim YT, Park JH, Park OO (2002) J Coll Interface Sci 245:198

    Article  CAS  Google Scholar 

  38. Woo DJ, Suh MH, Shin ES, Lee CW, Lee SH (2005) J Coll Interface Sci 288:71

    Article  CAS  Google Scholar 

  39. Yavuz M, Unal HI (2004) J Appl Polym Sci 91:833

    Article  Google Scholar 

  40. Sung JH, Hong CH, Park BJ, Choi H, Jhon MS (2005) Scripta Mater 53:1101

    Article  CAS  Google Scholar 

  41. Hiamtup P, Sirivat A, Jameison AM (2006) J Coll Interface Sci 295:270

    Article  CAS  Google Scholar 

  42. Kim JW, Kim SG, Choi HJ, Suh MS, Shin MJ, Jhon MS (2001) Int J Mod Phys B 15(6–7):657

    Article  CAS  Google Scholar 

  43. Yanyu L, Hejun D, Dianfu W (2001) Colloids Surf A Physicochem Eng Asp 189:203

    Article  Google Scholar 

  44. Genovese A, Shanks RA (2007) Macromol Mater Eng 292:184

    Article  CAS  Google Scholar 

  45. Acha BA, Reboredo MM, Marcovich NE (2007) Composites 38:1507

    Article  Google Scholar 

Download references

Acknowledgement

We are grateful to the Gazi University Research Fund (Grant No: 2006-45) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Ibrahim Unal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oz, K., Yavuz, M., Yilmaz, H. et al. Electrorheological properties and creep behavior of polyindole/poly(vinyl acetate) composite suspensions. J Mater Sci 43, 1451–1459 (2008). https://doi.org/10.1007/s10853-007-2319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2319-x

Keywords

Navigation