Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4022–4030 | Cite as

Crack resistance curve in glass matrix composite reinforced by long Nicalon® fibres

  • Ivo Dlouhy
  • Michal Kotoul
  • Tomas Vyslouzil
  • Zdenek Chlup
  • Aldo R. Boccaccini
Rees Rawlings Festschrift

Abstract

Theoretical micromechanical analysis of bridged crack development at chevron-notch tip of three-point bend specimens has been applied to determine the crack resistance curve for a composite made of a glass matrix reinforced by continuous Nicalon® fibres. Fracture toughness (K IC) values were determined using the chevron-notch technique at room temperature. The theoretical predictions were based on micromechanical analysis exploiting weight functions. Detailed FEM analysis using the ANSYS package was applied to determine numerically the weight functions for orthotropic materials. Appropriate bridging models for the theoretical prediction of the R-curve behaviour typical of the investigated composite were applied together with the weight functions. Experimental observations confirmed the theoretical calculations.

Keywords

Stress Intensity Factor Acoustic Emission Event Weibull Modulus Frictional Shear Stress Glass Matrix Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The research was supported by the Czech Science Foundation under grant numbers 106/05/0495 and 106/06/0724 is gratefully acknowledged.

References

  1. 1.
    Chawla KK (1993) Ceramic matrix composites. Chapman and Hall, LondonGoogle Scholar
  2. 2.
    Boccaccini AR, Rawlings RD (2002) Glass Technol 43C:191Google Scholar
  3. 3.
    Kim HS, Yong JA, Rawlings RD et al (1991) Mater Sci Tech Ser 7:155Google Scholar
  4. 4.
    Rawlings RD (2001) Brittleness—a tough problem. In: Pashley DW (ed) Imperial College inaugural lectures in materials science and materials engineering. Imperial College Press, London, pp 153–197, ISBN: 1-8609-4106-0Google Scholar
  5. 5.
    Akatsu T, Yasuda E, Sakai M (1996) Fract Mech 11:245Google Scholar
  6. 6.
    Thouless MD, Evans AG (1988) Acta Metall 36:517CrossRefGoogle Scholar
  7. 7.
    Dlouhy I, Boccaccini AR (2001) Scripta Materialia 44:531CrossRefGoogle Scholar
  8. 8.
    Boccaccini AR, Rawlings RD, Dlouhy I (2003) Mat Sci Eng A Struct 347:102CrossRefGoogle Scholar
  9. 9.
    Bluhm JI (1975) Eng Fract Mech 7:593CrossRefGoogle Scholar
  10. 10.
    Fett T, Munz D, Seidel J, Stech M, Rödel J (1996) J Am Ceram Soc 79:1189CrossRefGoogle Scholar
  11. 11.
    Sarrafi-Nour GR, Coyle TW, Fett T (1998) Eng Fract Mech 59:439CrossRefGoogle Scholar
  12. 12.
    Kotoul M, Vyslouzil T, Dlouhy I (2005) In: Aliabadi MH et al (eds) Proceedings of advances in fracture and damage mechanics IV. EC Ltd, UK, pp 217Google Scholar
  13. 13.
    Kotoul M, Vyslouzil T, Boccaccini AR, Dlouhy I Theoretical and experimental study of crack growth in glass matrix composite reinforced by long SiC fibres, Theoretical and applied fracture mechanics. doi: 10.1016/j.tafmec.2007.11.001
  14. 14.
    Pannhorst W et al (1990) Ceram Eng Sci Proc 11:947Google Scholar
  15. 15.
    Dlouhy I, Reinisch M, Boccaccini AR (2002) Fracture toughness and work of fracture of SiC fibre reinforced glass matrix composite, Fracture mechanics of ceramics, crack/microstructure interaction, R-curve behaviour. Kluwer, pp 203Google Scholar
  16. 16.
    Dlouhy I, Holzmann M, Man J, Valka L (1994) Metall Mater 32:3Google Scholar
  17. 17.
    Budiansky B, Cui YL (1994) J Mech Phys Solids 42:lGoogle Scholar
  18. 18.
    Tada H, Paris P, Irwin GR (1985) The stress analysis of cracks handbook. Del Research, St LouisGoogle Scholar
  19. 19.
    Sih GC, Paris PC, Irwin GR (1965) Int J Fract Mech 1:189Google Scholar
  20. 20.
    Boccaccini AR, Kern H, Dlouhy I (2001) Mater Sci Eng A308:111Google Scholar
  21. 21.
    Dlouhý I, Chlup Z (2005) Key Eng Mater 290:167CrossRefGoogle Scholar
  22. 22.
    Kastritseas C, Smith PA, Yeomans JA (2005) Comp Sci Technol 65:1880CrossRefGoogle Scholar
  23. 23.
    Chiang YCh (2001) Comp Sci Technol 61:1743CrossRefGoogle Scholar
  24. 24.
    Brennan JJ, Prewo KM (1982) J Mater Sci 17:2371.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ivo Dlouhy
    • 1
  • Michal Kotoul
    • 2
  • Tomas Vyslouzil
    • 3
  • Zdenek Chlup
    • 1
  • Aldo R. Boccaccini
    • 4
  1. 1.Institute of Physics of MaterialsASCRBrnoCzech Republic
  2. 2.Department of Solid MechanicsBrno University of TechnologyBrnoCzech Republic
  3. 3.Jan E. Purkyne UniversityUsti nad LabemCzech Republic
  4. 4.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations