Journal of Materials Science

, Volume 43, Issue 12, pp 4079–4090 | Cite as

Service life prediction for refractory materials

  • D. N. Boccaccini
  • M. Cannio
  • T. D. Volkov-Husoviæ
  • E. Kamseu
  • M. Romagnoli
  • P. Veronesi
  • C. Leonelli
  • I. Dlouhy
  • A. R. Boccaccini
Rees Rawlings Festschrift


Ultrasonic pulse velocity testing and image analysis were used to predict the thermal stability of cordierite–mullite refractories. Two compositions used as substrates in fast firing of porcelain whiteware, characterized by different microstructure and crack propagation behavior, were investigated. Fracture strength and fracture toughness values were obtained from three point bending test and chevron notched specimen technique, respectively. The measurement of the ultrasonic velocity was used to assess the material degradation with increasing number of thermal-shock cycles and specimen damage was monitored using image analysis to obtain further evidence of material degradation. The correlation between thermo-mechanical properties, ultrasonic velocity, microstructure, crack-propagation behavior and thermal-shock resistance was discussed. A remarkable similarity was found between the variation of ultrasonic velocity (when measured through the length of the refractory plates) and fracture strength with number of thermal shock cycles. On the other hand, the development of surface microcracking, as monitored by image analysis, is in good agreement with the variation of K IC with the number of thermal-shock cycles. The variation of the \(\frac{d\sigma_{\rm f}}{dE_{\rm dyn}}\) ratio with number of thermal-shock cycles shows the highest gradient of the investigated trends and it is proposed as a promising parameter to differentiate refractory materials regarding their different thermal shock behavior. Service life prediction models for refractory plates, from measured values of ultrasonic velocity and surface damage analysis, were proposed and validated.


Fracture Toughness Thermal Shock Cordierite Fracture Strength Ultrasonic Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support provided by the Czech Science Foundation under projects number 106/05/0495 is gratefully acknowledged.


  1. 1.
    Aneziris CG, Klippel U, Schärfl W, Stein V, Li Y (2007) Int J Appl Ceram Techn 4(6):481Google Scholar
  2. 2.
    Baker TJ, Zimba J, Akpan ET, Bashir I, Watola CT, Soboyejo WO (2006) Acta Mater 54:2665CrossRefGoogle Scholar
  3. 3.
    Bolelli G, Cannillo V, Lugli C, Lusvarghi L, Manfredini T (2006) J Eur Ceram Soc 26:2561CrossRefGoogle Scholar
  4. 4.
    Norton FH (1931) In: Refractories. Mcgraw-Hill, New York, 3rd edn., 1949Google Scholar
  5. 5.
    Goodrich HR (1927) J Am Ceram Soc 10:784CrossRefGoogle Scholar
  6. 6.
    Hasselman DPH (1969) J Am Ceram Soc 52:600CrossRefGoogle Scholar
  7. 7.
    Hasselman DPH (1970) Bull Am Ceram Soc 49:1033Google Scholar
  8. 8.
    Nakayama J (1964) Jpn J Appl Phys 3:422CrossRefGoogle Scholar
  9. 9.
    Davidge RW, Tappin G (1967) Trans Br Ceram Soc 66:405Google Scholar
  10. 10.
    Tacrarian MS (1955) Bull Soc Fr Ceram 29:20Google Scholar
  11. 11.
    Fawzy A, Charles ES (1985) Am Ceram Soc Bull 64:1555Google Scholar
  12. 12.
    Lawlar JG, Ross RH, Rub E (1981) Am Ceram Soc Bull 60:713Google Scholar
  13. 13.
    Boccaccini DN, Romagnoli M, Kamseu E, Veronesi P, Leonelli C, Pellacani GC (2007) J Eur Ceram Soc 27:1859CrossRefGoogle Scholar
  14. 14.
    Nyiogi SK, Das AC (1994) Interceram 43:453Google Scholar
  15. 15.
    Volkov-Husovic TD, Majstorovic J, Cvetkovic M (2003) Interceram 52:296Google Scholar
  16. 16.
    Volkov-Husoviæ TD, Janèiæ RM, Mitrakoviæ D (2005) Am Ceram Soc Bull 84:1Google Scholar
  17. 17.
    Boccaccini DN, Leonelli C, Rivasi MR, Romagnoli M, Boccaccini AR (2005) Ceram Int 31:417CrossRefGoogle Scholar
  18. 18.
    Leonelli C, Boccaccini DN, Dlouhy I, Veronesi P, Cannillo V, Boccaccini AR (2007) Adv Appl Ceram 106:142CrossRefGoogle Scholar
  19. 19.
    Boccaccini AR, Rawlings RD, Dlouhy I (2003) Mater Sci Eng A 347:102CrossRefGoogle Scholar
  20. 20.
    Bluhm JI (1975) Engng Fract Mech 7:593CrossRefGoogle Scholar
  21. 21.
    Pickles CSJ, Field JE (1996) J Phys D: Appl Phys 29:436CrossRefGoogle Scholar
  22. 22.
    Boccaccini DN (2007) Study of thermal conductivity in refractory materials by means of a guarded hot plate apparatus, in study of thermomechanical properties of refractory materials by non-destructive methods, design of facilities for thermomechanical properties characterization, PhD Thesis, University of Modena and Reggio Emilia. Dip. Ing. Mat. e dell’AmbienteGoogle Scholar
  23. 23.
    Emery AF (1980) In: Hasselman DPH, Heiler RA (eds) Thermal stresses in severe environment. Plenum Press, New YorkGoogle Scholar
  24. 24.
    Boccaccini AR, Ponton CB, Chawla KK (1998) Mat Sci Eng A 241:141CrossRefGoogle Scholar
  25. 25.
    Gdoutos EE (1993) In fracture mechanics: an introduction. Kluwer Academic Publishers, DordrechtGoogle Scholar
  26. 26.
    Boccaccini DN, Volkov Husovic T, Romagnoli M, Veronesi P, Cannio M, Leonelli C, Pellacani G, Boccaccini AR (2007) Int J Appl Ceram Tec 4(3):260CrossRefGoogle Scholar
  27. 27.
    Chlup Z, Dlouhy I, Boccaccini AR, Boccaccini DN, Leonelli C, Romagnoli M (2005) Key Eng Mater 290:260CrossRefGoogle Scholar
  28. 28.
    Chlup Z, Boccaccini D, Leonelli C, Romagnoli M, Boccaccini AR (2006) Silikáty 50:245Google Scholar
  29. 29.
    Hasselman DPH, Singh JP (1979) Am Ceram Soc Bull 58:856Google Scholar
  30. 30.
    Rice RW (1998) In: Porosity of ceramics. Marcel Dekker, New York, p 539Google Scholar
  31. 31.
    Ryshkewitch E (1953) J Am Ceram Soc 36:65CrossRefGoogle Scholar
  32. 32.
    Boccaccini AR, Ondracek G, Mazilu P, Windelberg D (1993) In: Duran P, Fernandez JF (eds) On the porosity dependence of the fracture strength of ceramics in third Euro-ceramics, engineering ceramics, vol 3, p 895Google Scholar
  33. 33.
    Davis WR (1968) Trans Brit Ceram Soc 67:515Google Scholar
  34. 34.
    Baxes GA (1994) Digital image processing principle and applications. John Wiley and sons Inc, New York, p 157Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • D. N. Boccaccini
    • 1
  • M. Cannio
    • 1
  • T. D. Volkov-Husoviæ
    • 2
  • E. Kamseu
    • 1
  • M. Romagnoli
    • 1
  • P. Veronesi
    • 1
  • C. Leonelli
    • 1
  • I. Dlouhy
    • 3
  • A. R. Boccaccini
    • 4
  1. 1.Dipartimento di Ingegneria dei Materiali e dell’AmbienteUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradBelgradeSerbia and Montenegro
  3. 3.Institute of Physics of Materials, ASCRBrnoCzech Republic
  4. 4.Department of MaterialsImperial College LondonLondonUK

Personalised recommendations