Skip to main content
Log in

Preparation of Semi-aromatic polyamide(PA)/multi-wall carbon nanotube (MWCNT) composites and its dynamic mechanical properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Well dispersed semi-aromatic polyamide(PA)/multi-wall carbon nanotube (MWCNT) composite was prepared through high-speed shearing method in the presence of surfactant sodium dodecylbenzene sulfonate (SDBS). Further analysis of morphology, crystallization, and dynamical mechanical properties shows the presence of SDBS helps to disperse the MWCNT and largely enhance the mechanical property. In comparison with neat PA component, the storage modulus (E′) of the blend system at 90 °C is 3.5 times larger than PA with MWCNT load ratio of 3 wt.%; and meanwhile the glass transition temperature (T g) of PA component increases about 17 °C; Similar phenomena have not found in MWCNT/PA composite without surfactant. Simultaneously, as DSC and morphology measurements indicate, the filled MWCNT does not show tremendous effect on the crystalline phase and crystallinity of PA, which imply that the increasing mechanical property for composites is due to the strengthening effect of MWCNT itself, not being caused by the change of crystalline phase and crystallinity by the addition of MWCNT. The increasing T g, indicative of the restricting movement of PA chains, is most probably ascribe to the strong interaction presented between MWCNT and PA chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang ZL, Poncharal P, de Heer WA (1999) First IUPAC workshop on advanced materials: nanostructured systems, Hong Kong, July 14–18

  2. Wagner HD, Lourie O, Feldman Y, Tenne R (1998) Appl Phys Lett 72:188

    Article  CAS  Google Scholar 

  3. Calvert PD (1999) Nature 399:210

    Article  CAS  Google Scholar 

  4. Carran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, Mccarthy B, Maier S, Strevens A (1998) Adv Mater 10:1091

    Article  Google Scholar 

  5. Liu L, Barber AH, Nuriel S, Wagner HD (2005) Adv Funct Mater 15:975

    Article  CAS  Google Scholar 

  6. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Polymer 45:739

    Article  CAS  Google Scholar 

  7. Chang TE, Jensen LR, Kisliuk A, Pipes RB, Pyrz R, Sokolov AP (2005) Polymer 46:439

    Article  CAS  Google Scholar 

  8. Gong X, Liu J, Baskaran S, Voise RD, Young JS (2000) Chem Mater 12:1049

    Article  CAS  Google Scholar 

  9. Ruan SL, Gao P, Yang XG, Yu TX (2003) Polymer 44:5643

    Article  CAS  Google Scholar 

  10. Chen JZ, Qu LJ, Li XF, Jiang AJ, Niu MJ, Wang JW (2005) J Appl Polymer Sci 97:1586

    Article  CAS  Google Scholar 

  11. Liu LQ, Zhang S, Hu TJ, Guo ZX, Ye C, Dai LM, Zhu DB (2002) Chem Phys Lett 359:191

    Article  CAS  Google Scholar 

  12. Qin Y, Liu L, Shi J, Wu W, Zhang J, Guo Z, Li Y, Zhu D (2003) Chem Mater 15:3256

    Article  CAS  Google Scholar 

  13. Dalmas F, Chazeau L, Gauthier C, Masenelli-Varlot K, Dendievel R, Cavaille JY, ForrÓ L (2005) J Polym Sci: Part B: Polym Phys 43:1186

    Article  CAS  Google Scholar 

  14. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Nano Lett 3:1379

    Article  CAS  Google Scholar 

  15. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Science 290:1331

    Article  CAS  Google Scholar 

  16. Israelachvili JN (1992) Intermolecular and surface forces, 2nd edn. Academic Press, San Diego

    Google Scholar 

  17. Konyushenko EN, Stejskal J, Trchová M, Hradil J, Kovářová J, Prokeš J, Cieslar M, Hwang J-Y, Chen K-H, Sapurina I (2006) Polymer 47:5715

    Article  CAS  Google Scholar 

  18. Baibarac M, Baltog I, Lefrant S, Meveller JY, Chauver G (2003) Chem Mater 15:4149

    Article  CAS  Google Scholar 

  19. Ferrer-Anglada N, Kaempgen M, Skákalová V, Dettlaf-Weglikowska U, Roth S (2004) Diam Relat Mater 13:256

    Article  CAS  Google Scholar 

  20. Gao C, Jin YZ, Kong H, Whitby RL, Acquah SF, Chen GY (2005) J Phys Chem B 109:11925

    Article  CAS  Google Scholar 

  21. Zeng H, Gao C, Yan D (2006) Adv Funct Mater 16:812

    Article  CAS  Google Scholar 

  22. Zeng H, Gao C, Wang Y, Paul CP, Kong H, Cui X, Yan D (2006) Polymer 47:113

    Article  CAS  Google Scholar 

  23. Arimoto H (1964) J Polym Sci A2:2283

    Google Scholar 

  24. Hummel DO (1965) Pure Appl Chem 11:497

    Article  CAS  Google Scholar 

  25. Frayer PD, Koening JL, Lando JB (1972) J Macromol Sci Phys B6:129

    Article  Google Scholar 

  26. Benedict LX, Louie SG, Cohen ML (1996) Solid State Commun 100:177

    Article  CAS  Google Scholar 

  27. Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84:4614

    Article  Google Scholar 

  28. Huxtable ST, Cahill GG, Shenogin S, Xue L, Ozisik R, Barone P, Usrey ML, Strano MS, Siddons G, Shim M, Keblinski P (2003) Nat Mater 2:731

    Article  CAS  Google Scholar 

  29. Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) J Am Chem Soc 127:847

    Google Scholar 

  30. Dufresne A, Paillet M, Putaux JL, Canet R, Carmona F, Delhaes P, Cui S (2005) J Mater Sci 37:3915. doi:https://doi.org/10.1023/A:1019659624567

    Article  Google Scholar 

  31. Savin DA, Pyun J (2002) J Polym Sci Part B: Polym Phys 40:2667

    Article  CAS  Google Scholar 

  32. Yao Z, Braidy N, Botton GA, Adronov A (2003) J Am Chem Soc 125:16015

    Article  CAS  Google Scholar 

  33. Liu TX, Shen L, Chow SY, Zhang WD (2004) Macromolecules 37:7214

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partially subsidized by Henan Innovation Project for University Prominent Research Talents (“HAIPURT”) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, R., Yang, D. & He, L. Preparation of Semi-aromatic polyamide(PA)/multi-wall carbon nanotube (MWCNT) composites and its dynamic mechanical properties. J Mater Sci 43, 1205–1213 (2008). https://doi.org/10.1007/s10853-007-2277-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2277-3

Keywords

Navigation