Skip to main content
Log in

Ultraporous monoliths of alumina prepared at room temperature by aluminium oxidation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation of aluminium through a mercury film usually leads to unorganized filaments or fibrous powders of hydrated alumina. Here, we show that the addition of a small amount of silver in the mercury considerably modifies the growth process, and that large sized monoliths can be obtained through a new process. Regular growth can be maintained at a typical rate of 2.1 μm s−1 (∼0.75 cm/h) for several hours. The samples consist of tangled nanometric fibres and have an open porosity of 99%. The influence of various parameters has been studied and optimal conditions for regular growth have been determined. Anhydrous alumina monoliths with a nanometric microstructure and a high-specific area are obtained after thermal treatments that remove water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wislicenus H (1908) Kolloid-Z 2:11

    Google Scholar 

  2. Brown MH, Binger WW, Brown RH (1952) Corrosion 8:155

    Article  CAS  Google Scholar 

  3. Bodle WW, Attari A, Serauskaus R (1986) In: Proceedings of sixth international conference on liquified natural gas, Kyoto, Japan, p 1

  4. Pinnel MR, Bennet JE (1972) J Mater Sci 7:1016, doi: https://doi.org/10.1007/BF00550065

  5. Watson JHL, Vallejo-Freire A, De Souza Santos P, Parsons J (1957) Kolloid-Z 154:4

    Article  CAS  Google Scholar 

  6. Bruce LA, West GW (1974) J Mater Sci Lett 9:335

    Article  CAS  Google Scholar 

  7. Markel EJ, Reddick E, Napper LA, Van Zee JW (1994) J Non-Cryst Solids 180:32

    Article  CAS  Google Scholar 

  8. Beauvy M, Vignes J-L, Michel M, Mazerolles L, Frappart C, Di Costanzo T, patent (CNRS-CEA) n°FR2847569, 28-05-2004

  9. Vignes J-L, Mazerolles L, Michel D (1997) Key Eng Mater 132–136:432

    Article  Google Scholar 

  10. Iler RK (1961) J Am Ceram Soc 44:618

    Article  CAS  Google Scholar 

  11. Badkar PA, Bailley JE (1976) J Mater Sci 11:1794, doi: https://doi.org/10.1007/BF00708257

  12. Levin I, Brandon D (1998) J Am Ceram Soc 81:1995

    Article  CAS  Google Scholar 

  13. Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. A.S.M. Int. Materials Park, Ohio, vol 3, p 2138, vol 1, p 43

  14. Huang Z-R, Jiang D, Michel D, Mazerolles L, Ferrand A, Di Costanzo T, Vignes J-L (2002) J Mater Res 17:3177

    Article  CAS  Google Scholar 

  15. Mazerolles L, Michel D, Di Costanzo T, Vignes J-L (2002) Ceram Trans 135:227

    CAS  Google Scholar 

  16. Mazerolles L, Michel D, Vignes J-L, Di Costanzo T, Huang Z, Jiang D (2003) Ceram Eng Sci Proc 24:105

    Article  CAS  Google Scholar 

  17. Logie V, Maire G, Michel D, Vignes J-L (1999) J Catal 188:90

    Article  CAS  Google Scholar 

  18. Di Gregorio F, Keller V, Di Costanzo T, Vignes J-L, Michel D, Maire G (2001) Appl Catal A Gen 218:13

    Article  CAS  Google Scholar 

  19. Bai BJ, Vignes J-L, Fournier T, Michel D (2002) Adv Eng Mat 4:701

    Article  CAS  Google Scholar 

  20. Raberg LB, Jensen MB, Olsbye U, Daniel C, Haag S, Mirodatos C, Olafsen Sjastad A (2007) J Catal 249:250

    Article  CAS  Google Scholar 

  21. Dumeignil F, Sato K, Imamura M, Matsubayashi N, Payen E, Shimada H (2005) Appl Catal A Gen 287:135

    Article  CAS  Google Scholar 

  22. Rinaldi R, Fujiwara FY, Holderich W, Schuchardt U (2006) J Catal 244:92

    Article  CAS  Google Scholar 

  23. Mazaleyrat F, Varga LK (2000) J Magn Magn Mater 215–216:253

    Article  Google Scholar 

  24. Hodama RH (1999) J Magn Magn Mater 200:359

    Article  Google Scholar 

  25. Eranna G, Joshi BC, Runthala DP, Gupta RP (2004) Crit Rev Solid State Mater Sci 29:111

    Article  CAS  Google Scholar 

  26. Cao L, Bornscheuer UT, Schmid RD (1999) J Mol Catal B: Enzym 6:279

    Article  CAS  Google Scholar 

  27. Tischer W, Kasche V (1999) Trends Biotechnol 17:326

    Article  CAS  Google Scholar 

  28. Livage J, Coradin T, Roux C (2001) J Phys: Cond Matter 13:R673

    CAS  Google Scholar 

  29. Nguyen-Ngoc H, Tran-Minh C (2007) Mater Sci Eng C 27:607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Dubos and Mr. Leroy from the Centre de Recherche Pechiney-Alcan (Voreppe, France) and Mr. Fernandez (Alcan, Mercus, France) for supplying us with high-purity and doped aluminium samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Vignes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignes, JL., Frappart, C., Di Costanzo, T. et al. Ultraporous monoliths of alumina prepared at room temperature by aluminium oxidation. J Mater Sci 43, 1234–1240 (2008). https://doi.org/10.1007/s10853-007-2260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2260-z

Keywords

Navigation