Skip to main content
Log in

Surface grain boundary engineering of shot-peened type 304 stainless steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of thermal annealing on shot-peened Type 304 stainless steel has been examined using electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). The objective was to evaluate the potential for surface property control by grain boundary engineering. The near surface microstructure of shot-peened material showed a gradual change of the grain boundary character distribution with depth. Twin (Σ3) and higher order twin grain boundaries (Σ9, Σ27) identified closer to the shot-peened surface had significant deviations from their optimum misorientation. The subsequent application of annealing treatments caused depth-dependent changes of the near surface microstructure, with variations in grain size, low Σ CSL grain boundary populations and their deviation from optimum misorientation. Microstructure developments were dependent on the applied heat treatment, with the near surface microstructures showing similarities to microstructures obtained through bulk thermo-mechanical processing. Shot peening, followed by annealing, may therefore be used to control the near surface microstructure of components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grimmer H, Bollmann W, Warrington DH (1974) Acta Crystallogr A30:197

    Article  Google Scholar 

  2. Gertsman VY, Bruemmer SM (2001) Acta Mater 49:1589

    Article  CAS  Google Scholar 

  3. Bi HY, Kokawa H, Jie Wang Z, Shimada M, Sato YS (2003) Scripta Mater 49(3):219

    Article  CAS  Google Scholar 

  4. Palumbo G, Aust KT (1990) Acta Metall Mater 38(11):23343

    Article  Google Scholar 

  5. Randle V (2006) Scripta Mater 54:1011

    Article  CAS  Google Scholar 

  6. Rohrer GS, Randle V, Kim C-S, Hu Y (2006) Acta Mater 54:4480

    Article  Google Scholar 

  7. Watanabe T (1984) Res Mech 11:47

    CAS  Google Scholar 

  8. Palumbo G (1997) Patent 5,702,543—Thermomechanical Processing of Metallic Materials. United States

  9. Palumbo G (1998) Patent 5,817,193—Metals Having Improved Resistance to Intergranular Stress Corrosion Cracking. United States

  10. Randle V (1999) Acta Mater 47(15–16):4187

    Article  CAS  Google Scholar 

  11. Lin P, Palumbo G, Erb U, Aust KT (1995) Scripta Metall Mater 33(9):1387

    Article  CAS  Google Scholar 

  12. Lehockey EM, Palumbo G, Lin P (1998) Metall Mater Trans 29A:3069

    Article  CAS  Google Scholar 

  13. Kumar M, King WE, Schwartz AJ (2000) Acta Mater 48:2081

    Article  CAS  Google Scholar 

  14. Schuh CA, Kumar M, King WE (2003) Acta Mater 51:687

    Article  CAS  Google Scholar 

  15. Thaveeprungsriporn V, Sinsrok P, Thong-Aram D (2001) Scripta Mater 44:67

    Article  CAS  Google Scholar 

  16. King WE, Schwartz AJ (1998) Scripta Mater 38(3):449

    Article  CAS  Google Scholar 

  17. Shimada M, Kokawa H, Wang ZJ, Sato YS, Karibe I (2002) Acta Mater 50(9):2331

    Article  CAS  Google Scholar 

  18. Engelberg DL, Humphreys FJ, Marrow TJ (2007) J Microsc In Press

  19. Tan L, Allen TR (2005) Metall Mater Trans 36A(7):1921

    Article  CAS  Google Scholar 

  20. Jivkov AP, Stevens NPC, Marrow TJ (2006) Acta Mater 54:3493

    Article  CAS  Google Scholar 

  21. Jivkov AP, Marrow TJ (2007) Theor Appl Fract Mech 48(3):187

    Article  Google Scholar 

  22. Jivkov AP, Stevens NPC, Marrow TJ (2007) J Pressure Vessel Technol T ASME In Press

  23. Jivkov AP, Stevens NPC, Marrow TJ (2006) Comp Mater Sci 38:442

    Article  CAS  Google Scholar 

  24. Winning M (2006) Scripta Mater 54:987

    Article  CAS  Google Scholar 

  25. Molodov DA, Konijnenberg PJ (2006) Scripta Mater 54:977

    Article  CAS  Google Scholar 

  26. Watanabe T, Tsurekawa S, Zhao X, Zuo L (2006) Scripta Mater 54:969

    Article  CAS  Google Scholar 

  27. Furukawa M, Horita Z, Langdon TG (2005) J Mater Sci 40:909

    Article  CAS  Google Scholar 

  28. Wang XY, Li DY (2002) Electrochim Acta 47:3939

    Article  CAS  Google Scholar 

  29. Liu G, Lu J, Lu K (2000) Mater Sci Eng A286:91

    Article  CAS  Google Scholar 

  30. Wang T, Yu j, Dong B (2006) Surf Coat Technol 200:4777

    Article  CAS  Google Scholar 

  31. Limoges DL, Palumbo G, Lin PK (2002) Patent 6,344,097 B1—Surface Treatment of Austenitic Ni-Fe-Cr-Based Alloys for Improved Resistance to Intergranular Corrosion and Cracking. United States

  32. Lindsay JH (2004) Plat Surf Finish 91(7):1

    Google Scholar 

  33. Humphreys FJ (2001) Vmap—orientation mapping and quantitative metallography by EBSD. Manchester Materials Science Centre, The University of Manchester, Manchester

    Google Scholar 

  34. Brandon DG (1966) Acta Metall 14:1479

    Article  CAS  Google Scholar 

  35. Altenberger I, Scholtes B, Martin U, Oettel H (1999) Mater Sci Eng A264:1

    Article  CAS  Google Scholar 

  36. Renzhi W, Xaingbin L, Yuanfa Y (1985) In: Niku-Lari A (ed) Advances in surface treatments: technology, applications, effects, vol 2. Pergamon Press, pp 161–170 (ISBN 0080325351)

  37. Kumar M, Schwartz AJ, King WE (2001) Mater Sci Eng A309–310:78

    Article  Google Scholar 

  38. Thomson CB, Randle V (1997) Acta Mater 45(12):4909

    Article  CAS  Google Scholar 

  39. Iino Y (1992) J Mater Sci Lett 11:1253

    Article  CAS  Google Scholar 

  40. Iino Y, Kim TY, Mun SD (1996) Wear 199:211

    Article  CAS  Google Scholar 

  41. Randle V, Jones R, Marrow J, Engelberg D (2008) Effect of Strain Path and Annealing on Development of Resistance to Intergranular Degradation in Austenitic Stainless Steel. ICOTOM 15. Pittsburgh: TMS

Download references

Acknowledgements

The authors are grateful for the support of Rolls-Royce (Marine) Ltd. The authors are grateful to Metal Improvement Company for conducting the peening of the 304 stainless steel. The authors are also grateful for the technical assistance from Judith Shackleton with the X-ray diffraction measurements and Lai Mei Li with the plastic strain measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osama M. Alyousif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alyousif, O.M., Engelberg, D.L. & Marrow, T.J. Surface grain boundary engineering of shot-peened type 304 stainless steel. J Mater Sci 43, 1270–1277 (2008). https://doi.org/10.1007/s10853-007-2252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2252-z

Keywords

Navigation