Journal of Materials Science

, Volume 43, Issue 3, pp 1094–1101 | Cite as

Characterization and dielectric properties of β-SiC nanofibres

  • Yiming Yao
  • Anna Jänis
  • Uta Klement


SiC nanofibres produced by chemical vapour reaction technique are investigated using scanning and transmission electron microscopy. The nanofibres have been found to have a crystalline core of β-SiC sheathed with thorn-like turbostratic carbon or amorphous Si/O/C, respectively. For this material, real and imaginary part of relative permittivity is measured in a frequency range of 1–18 GHz at room temperature. The results reveal that the permittivity and dielectric loss in the SiC nanofibres are a magnitude higher compared with sub-microcrystalline SiC powder. Composition and nanostructure are held responsible for the difference in dielectric properties. The mechanisms of dielectric loss in the SiC nanofibres are discussed based on interfacial polarization, lattice defects in the SiC nanofibre cores and conduction loss of turbostratic carbon in the thorn-like sheath of SiC nanofibres.


Dielectric Loss Loss Tangent Relative Permittivity Crystalline Core Permittivity Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the Swedish Defence Nanotechnology Program for the financial support, and University Claude Bernard, Laboratoire des Multimatériaux et Interfaces (LMI) in Lyon, France, for the supply of the materials. We would also like to thank Jan Fagerström (Swedish Defence Research Agency) for helpful discussions.


  1. 1.
    Zhu Y, Kroto HW, Walton D, Lange H, Huczko A (2002) Chem Phys Lett 365:457CrossRefGoogle Scholar
  2. 2.
    Yang W, Araki H, Kohyama A, Katoh Y, Hu Q, Suzki H (2004) J Nucl Mater 329–333:539CrossRefGoogle Scholar
  3. 3.
    Zhang LD, Meng GW, Phillipp F (2000) Mater Sci Eng A 286:34CrossRefGoogle Scholar
  4. 4.
    Petrovic JJ, Milewski JV, Rohr DL, Gac FD (1985) J Mater Sci 20:1167CrossRefGoogle Scholar
  5. 5.
    Wong EW, Sheenhan PE, Lieber CM (1997) Science 277:1971CrossRefGoogle Scholar
  6. 6.
    Kim Ph, Lieber CM (1999) Science 286:2148CrossRefGoogle Scholar
  7. 7.
    Feng ZC, Mascerannas AJ, Choyke WJ, Powell JA (1988) J Appl Phys 64(6):3176CrossRefGoogle Scholar
  8. 8.
    Fissel A, schröter B, Richer W (1995) Appl Phys Lett 66:3182CrossRefGoogle Scholar
  9. 9.
    Bonard J-M, Salvetat J-P, Stocki T, de Heer WA, Forro L, Chatelain A (1998) Appl Phys Lett 73:918CrossRefGoogle Scholar
  10. 10.
    Ryu YH, Park BT, Song YH, Yong K (2004) J Cryst Growth 271:99CrossRefGoogle Scholar
  11. 11.
    Han WQ, Fan SS, Li QQ, Gu BL, Yu DP (1997) Chem Phys Lett 265:374CrossRefGoogle Scholar
  12. 12.
    Feng DH, Jia TQ, Li XX, Xu ZZ, Chen J, Deng SZ, Wu ZS, Xu NS (2003) Solid State Commun 128:295CrossRefGoogle Scholar
  13. 13.
    Liang CH, Meng GW, Zhang LD, Wu YC, Cui Z (2000) Chem Phys Lett 329:323CrossRefGoogle Scholar
  14. 14.
    Kassiba A, Tbellout M, Charpentier S, Herlin N, Emery JR (2000) Solid State Commun 115:389CrossRefGoogle Scholar
  15. 15.
    Saulig-Wenger K, Cornu D, Chassagneux F, Ferro G, Epicier Th, Miele Ph (2002) Solid State Commun 124:157CrossRefGoogle Scholar
  16. 16.
    Weir WB (1974) Proc IEEE 62:33CrossRefGoogle Scholar
  17. 17.
    Starck HC (2006) Home page: Accessed 01 Nov 2006
  18. 18.
    Charpentier S, Kassiba A, Bulou A, Monthioux M, Carchetier M (1999) Eur Phys J Appl Phys 8:111CrossRefGoogle Scholar
  19. 19.
    Kassiba A (2003) In: Legrand AP, Sénémaud Ch (eds) Nanostructured silicon-based powders and composites. Taylor & Francis Group, London and New York, p 227Google Scholar
  20. 20.
    Kingery WD, Boven HK, Uhlmann DR (1976) Introduction to ceramics. John Wiley & Sons, New York, p 921Google Scholar
  21. 21.
    Raju GG (2003) Dielectrics in electric fields. Marcel Dekker, Inc., New York, Basel. Accessed 6 Dec 2006
  22. 22.
    Kassiba A, Charpentier S (2003) In: Legrand AP, Sénémaud C (eds) Nanostructured silicon-based powders and composites. Taylor & Francis, London and New York, p 211Google Scholar
  23. 23.
    Kityk IV, Kassiba A, Tuesu K, Charpentier C, Ling Y, Makowska-Janusik M (2000) Mater Sci Eng B 77:147CrossRefGoogle Scholar
  24. 24.
    Charpentier S, Kassiba A, Emery J, Cauchetier M (1999) J Phys Condens Mater 11:4887CrossRefGoogle Scholar
  25. 25.
    Mouchon E, Colomban Ph (1996) J Mater Sci 31:323CrossRefGoogle Scholar
  26. 26.
    Cordelair J, Greil P (2000) J Eur Ceram Soc 20:1947CrossRefGoogle Scholar
  27. 27.
    Jin R, Zhou ZX, Mandrus D, Ivanov IN, Eres G, Howe JY, Puretzky AA, Geohegan DB (2007) Phys B 388:326CrossRefGoogle Scholar
  28. 28.
    Priou A (1992) Dielectric properties of heterogeneous materials, Pier 6 progress in electromagnetics research. Elsevier, New York, p 14Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Materials and Manufacturing TechnologyChalmers University of TechnologyGothenburgSweden
  2. 2.Division of Sensor SystemsSwedish Defence Research AgencyLinkopingSweden

Personalised recommendations