Skip to main content
Log in

The effect of porosity in thermal shock

  • Rees Rawlings Festschrift
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of porosity on cracking during thermal shock have been studied by directly observing the cracks that formed after quenching heated porous alumina bars into water. The porosity was introduced by adding different volume fractions of fugitive inclusions and the behaviour compared with that obtained by partial sintering of a powder compact. Where fugitive inclusions had been used, there was little effect of either pore size or pore volume fraction over the ranges studied. The extent of cracking was always slightly less than that of a monolithic, dense alumina and gave reasonable agreement with predictions using experimentally measured data. However, cracks grew much further in the partially sintered material. This discrepancy became greater as the temperature change increased, inconsistent with existing analyses. It is suggested that this difference in behaviour arises predominantly because of the greater measured fracture energy of the alumina made using fugitive inclusions compared with that made by partial sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Orenstein RM, Green DJ (1992) J Am Ceram Soc 75:1895

    Article  Google Scholar 

  2. Coble RL, Kingery WD (1955) J Am Ceram Soc 38:33

    Article  Google Scholar 

  3. Arato T, Nakamura K, Sobue M (1987) J Ceram Soc Jpn (Intl Edn) 97:790

    Google Scholar 

  4. Gilman JJ (1959) Fracture. Technical Press of MIT, Boston, p 193

    Google Scholar 

  5. Rice RW (1996) J Mater Sci 31:1969

    Article  CAS  Google Scholar 

  6. Rice RW (1996) J Mater Sci 31:4503

    Article  CAS  Google Scholar 

  7. Smith RD, Anderson HA, Moore RE (1976) Am Ceram Soc Bull 55:979

    CAS  Google Scholar 

  8. Koumoto K, Shimuzu H, Seo WS, Pai CH, Yanaqgida H (1991) Trans J Brit Ceram Soc 90:32

    CAS  Google Scholar 

  9. Hasselman DPH (1969) J Am Ceram Soc 52:600

    Article  CAS  Google Scholar 

  10. Evans AG, Charles EA (1977) J Am Ceram Soc 60:22

    Article  CAS  Google Scholar 

  11. Bahr HA, Fischer G, Weiss HJ (1986) J Mater Sci 21:2716

    Article  CAS  Google Scholar 

  12. Schubert C, Bahr H-A, Weiss H-J (1986) Carbon 24:21

    Article  Google Scholar 

  13. Davidge RW, Tappin G (1967) Trans Brit Ceram Soc 66:405

    CAS  Google Scholar 

  14. Fett T, Munz D (1992) J Am Ceram Soc 75:3133

    Article  CAS  Google Scholar 

  15. Vandeperre LJ, Kristofferson A, Carlstrom E, Clegg WJ (2001) J Am Ceram Soc 84:104

    Article  CAS  Google Scholar 

  16. Vandeperre LJ, Inagaki Y, Clegg WJ (2003) J Mater Res 18:2724

    Article  CAS  Google Scholar 

  17. Lee WJ, Kim Y, Case ED (1993) J Mater Sci 28:2079

    Article  CAS  Google Scholar 

  18. Rice RW (1998) Porosity of ceramics. M. Dekker, New York

    Google Scholar 

  19. Lam DCC, Lange FF, Evans AG (1994) J Am Ceram Soc 77:2113

    Article  CAS  Google Scholar 

  20. Evans AG (1975) Proc Br Ceram Soc 25:217

    CAS  Google Scholar 

  21. Vandeperre LJ, Wang J, Clegg WJ (2004) Phil Mag 84:3689

    Article  CAS  Google Scholar 

  22. Yang J-F, Ohji T, Kanzaki S, Diaz A, Hampshire S (2002) J Am Ceram Soc 85:1512

    Article  CAS  Google Scholar 

  23. Wang J, Vandeperre LJ, Clegg WJ (2001) Ceram Eng Sci Proc 22:233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E. Carlström (I.V.F., Sweden) and A. Kristoffersson (Fiat, Sweden) for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Clegg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, C., Vandeperre, L.J., Stearn, R.J. et al. The effect of porosity in thermal shock. J Mater Sci 43, 4099–4106 (2008). https://doi.org/10.1007/s10853-007-2238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2238-x

Keywords

Navigation