Journal of Materials Science

, Volume 43, Issue 11, pp 3889–3893 | Cite as

Aluminum partitioning during phase separation in Fe–20%Cr–6%Al ODS alloy

  • C. Capdevila
  • M. K. Miller
  • K. F. Russell
Intergranular and Interphase Boundaries in Materials


Phase separation in a commercial Fe–20 wt.%Cr–6%Al oxide dispersion-strengthened PM 2000 steel has been characterized with a local-electrode atom probe after isothermal aging at 708 K and 748 K for times up to 3,600 h. A progressing decrease in the Al content of the Cr-rich α′ phase was observed with time at both aging temperatures. The Al partitioning trend was consistent with theoretical calculations. However, the experimentally observed Al partitioning factor was significantly lower than the predicted equilibrium value. A ∼10 nm diameter, roughly spherical, Al- and Ti-enriched β′ Fe(AlTi) phase was also observed.


Atom Probe Creep Strength Isothermal Aging Oxide Dispersion Strengthened Atom Probe Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support from the Spanish Ministerio de Educación y Ciencia in the form of a Coordinate Project in the Energy Area of Plan Nacional 2006 (ENE2006-15170-C02). Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by Basic Energy Sciences, US Department of Energy. PM 2000™ is a trademark of Plansee SE.


  1. 1.
    Schade P, Bartha L (2006) Int J Refract Met Hard Mater 24:273CrossRefGoogle Scholar
  2. 2.
    Schaublin R, Ramar A, Baluc N, De Castro V, Monge MA, Leguey T, Schmid N, Bonjour C (2006) J Nucl Mater 351:247CrossRefGoogle Scholar
  3. 3.
    Capdevila C, Miller U, Jelenak H, Bhadeshia H (2001) Mater Sci Eng A 316:161CrossRefGoogle Scholar
  4. 4.
    Blackburn MJ, Nutting J (1964) J Iron Steel Inst 202:610Google Scholar
  5. 5.
    Lagneborg R (1967) ASM Trans Quart 60:67Google Scholar
  6. 6.
    Plumtree A, Gullberg R (1976) Metall Trans A 7A:1451Google Scholar
  7. 7.
    Read HG, Murakami H, Hono K (1997) Scripta Mater 36:355CrossRefGoogle Scholar
  8. 8.
    Zhu F, Wendt H, Haasen P (1982) Scr Metall 16:1175CrossRefGoogle Scholar
  9. 9.
    Miller MK (2000) Atom Probe Tomography. Kluwer Academic/Plenum Press, New YorkGoogle Scholar
  10. 10.
    Kuwano H (1985) Trans Jpn Inst Met 26:721Google Scholar
  11. 11.
    Kuwano H (1985) Trans Jpn Inst Met 26:730Google Scholar
  12. 12.
    Dubiel SM, Inden G (1987) Z MetaIlkd 78:544Google Scholar
  13. 13.
    Miller MK, Hetherington MG, Weertman JR, Calderon HA (1991) In: Stocks GM, Pope DP, Giamei AF (eds) Alloy phase stability and design. MRS, Pittsburgh, p 219Google Scholar
  14. 14.
    Hellman OC, Vandenbroucke JA, Rüsing J, Isheim D, Seidman DN (2000) Microsc Microanal 6:437Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Centro Nacional de Investigaciones Metalúrgicas (CENIM), Consejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations