Advertisement

Journal of Materials Science

, Volume 43, Issue 1, pp 398–401 | Cite as

Formation of poly(vinylidene fluoride) crystalline phases from tetrahydrofuran/N, N-dimethylformamide mixed solvent

  • Wenzhong Ma
  • Jun Zhang
  • Xiaolin Wang
Letter

Poly(vinylidene fluoride) (PVDF) is one of the semicrystalline polymers with at least four crystalline forms referred to as α, β, γ, and δ phase, among which the β phase has gained substantial importance due to its advantageous pyro- and piezo-electric properties [1, 2]. It requires a better method to induce the formation of β phase crystal in order to improve the electrical properties of PVDF. β phase is not usually obtained by crystallization from the melt, but it is normally obtained by various methods including tensile deformation and uniaxial compressional deformation of α phase [3, 4], blending with small contents of poly(methyl methacrylate) (PMMA) [5, 6] or poly(o-methoxyaniline) (POMA) [7], quenching and then annealing process [8], applying a strong electric field [9] and crystallizing from solution at appropriate conditions [10, 11, 12]. In all these methods which used to prepare β phase of PVDF, the one grown from a single solvent is widely used because of its facility and...

Keywords

Differential Scanning Calorimetry PVDF Vinylidene Fluoride Semicrystalline Polymer POMA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This research is supported by the Key Project of BMSTC (D0406003040191).

References

  1. 1.
    Carbeck JD, Rutledge GC (1999) In: Hougham G, Cassidy PE, Johns K, Davidson T (eds) Fluoropolymers 2: properties. Plenum Press, New York, p 191Google Scholar
  2. 2.
    Broadhurst MG, Davis GT (1978) J Appl Phys 49:4992CrossRefGoogle Scholar
  3. 3.
    Matsushige K, Nagata K, Imada S, Takemura T (1980) Polymer 21:1391CrossRefGoogle Scholar
  4. 4.
    Yang DC, Thomas EL (1984) J Mater Sci Lett 3:929CrossRefGoogle Scholar
  5. 5.
    Gregorio R Jr, Nociti NCPS (1995) J Phys D: Appl Phys 28:432CrossRefGoogle Scholar
  6. 6.
    Ma WZ, Zhang J, Wang XL, Wang SM (2007) Appl Surf Sci 253:8377CrossRefGoogle Scholar
  7. 7.
    Rocha IS, Mattoso LHC, Malmonge LF, Gregorio R Jr (1999) J Polym Sci Part B: Polym Phys 37:1219CrossRefGoogle Scholar
  8. 8.
    Yang D, Chen Y (1987) J Mater Sci Lett 6:599CrossRefGoogle Scholar
  9. 9.
    Davis GT, McKinney JE, Broadhurst MG, Roth SC (1978) J Appl Phys 49:4998CrossRefGoogle Scholar
  10. 10.
    Gregorio R Jr, Cestari M (1994) J Polym Sci Part B: Polym Phys 32:859CrossRefGoogle Scholar
  11. 11.
    Gregorio R Jr (2006) J Appl Polym Sci 100:3272CrossRefGoogle Scholar
  12. 12.
    Gelfandbein V, Perlman MM (1983) J Mater Sci 18:3183.  doi:10.1007/BF00544141
  13. 13.
    Bottino A, Capannelli G, Munari S, Turturro A (1988) J Polym Sci Part B: Polym Phys 26:785CrossRefGoogle Scholar
  14. 14.
    Csernica J, Brown A (1999) J Chem Educ 76:1526CrossRefGoogle Scholar
  15. 15.
    Benz M, Euler WB, Gregory OJ (2001) Langmuir 17:239CrossRefGoogle Scholar
  16. 16.
    Lovinger AJ (1980) J Polym Sci Polym Phys Ed 18:793CrossRefGoogle Scholar
  17. 17.
    Gregorio R Jr, Ueno EM (1999) J Mater Sci 34:4489.  doi:10.1023/A:1004689205706 Google Scholar
  18. 18.
    He X, Yao K (2006) Appl Phys Lett 19:112909CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing University of TechnologyNanjingP.R. China
  2. 2.Department of Chemical EngineeringTsinghua UniversityBeijingP.R. China

Personalised recommendations