Journal of Materials Science

, Volume 43, Issue 3, pp 933–941 | Cite as

Reaction–formation mechanisms and microstructure evolution of biomorphic SiC

  • Francisco M. Varela-Feria
  • Joaquín Ramírez-Rico
  • Antonio R. de Arellano-López
  • Julián Martínez-Fernández
  • Mrityunjay Singh


Biomorphic SiC is fabricated by liquid Si infiltration of a carbon preform obtained from pyrolized wood that can be selected for tailored properties. The microstructure and reaction kinetics of biomorphic SiC have been investigated by means of TEM, SEM, EBSD, and partial infiltration experiments. The microstructure of the material consists of SiC and Si and a small fraction of unreacted C. The SiC follows a bimodal size distribution of grains in the micrometer and the nanometer range with no preferential orientation. The infiltration-reaction constant has been determined as 18 × 10−3 s−1. These observations suggest that the main mechanism for SiC formation is solution–precipitation in the first stage of growth. If the pores in the wood are small enough they can be choked by SiC grains that act as a diffusion barrier between Si and C. If that is the case, Si will diffuse through SiC forming SiC grains in the nanometer range.


Small Channel Molten Silicon Reactive Infiltration Carbon Preform Wood Pyrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Spanish Ministry of Science and Technology through Grant MAT 2006-13005-C. The authors are grateful to the CITIUS at the University of Seville for the use of their electron microscopy facilities. J.R.-R. is grateful to the Junta de Andalucía for his pre-doctoral Grant.


  1. 1.
    Martinez-Fernandez J, Varela-Feria FM, Singh M (2000) Scripta Mater 43:813CrossRefGoogle Scholar
  2. 2.
    Singh M, Behrendt DR (1994) J Mater Res 9:1701CrossRefGoogle Scholar
  3. 3.
    Singh M, Behrendt DR (1995) Mater Sci Eng A 194:193CrossRefGoogle Scholar
  4. 4.
    Byrne CE, Nagle DC (1997) Carbon 35:259CrossRefGoogle Scholar
  5. 5.
    Byrne CE, Nagle DC (1997) Carbon 35:267CrossRefGoogle Scholar
  6. 6.
    Byrne CE, Nagle DC (1997) Mater Res Innov 1:137CrossRefGoogle Scholar
  7. 7.
    Martinez-Fernandez J, De Arellano-Lopez AR, Varela-Feria FM, Singh M (2001) Procedimiento para la Fabricación de Carburo de Silicio a partir de Precursores Vegetales. vol. P200102278. SpainGoogle Scholar
  8. 8.
    Varela-Feria FM, Martinez-Fernandez J, De Arellano-Lopez AR, Singh M (2002) J Eur Ceram Soc 22:2719CrossRefGoogle Scholar
  9. 9.
    Varela-Feria FM, Lopez-Robledo MJ, Martinez-Fernandez J, De Arellano-Lopez AR, Singh M (2002) Ceram Eng Sci Proc 23:681Google Scholar
  10. 10.
    Martinez-Fernandez J, Munoz A, De Arellano-Lopez AR, Varela-Feria FM, Dominguez-Rodriguez A, Singh M (2003) Acta Mater 51:3259CrossRefGoogle Scholar
  11. 11.
    De Arellano-Lopez AR, Martinez-Fernandez J, Gonzalez P, Dominguez C, Fernandez-Quero V, Singh M (2004) Int J Appl Ceram Technol 1:56CrossRefGoogle Scholar
  12. 12.
    Gonzalez P, Serra J, Liste S, Chiussi S, Leon B, Perez-Amor M, Martinez-Fernandez J, De Arellano-Lopez AR, Varela-Feria FM (2003) Biomaterials 24:4827CrossRefGoogle Scholar
  13. 13.
    Zollfrank C, Sieber H (2005) J Am Ceram Soc 88:51CrossRefGoogle Scholar
  14. 14.
    Coates DG (1967) Philos Mag 16:1179CrossRefGoogle Scholar
  15. 15.
    Dingley DJ (2000) In: Schwartz AJ, Kumar M, Adams BL (eds) Electron backscatter diffraction in materials science. Plenum, New YorkGoogle Scholar
  16. 16.
    Kocks UF, Tomé CN, Wenk H-R (1998) Texture and anisotropy. Cambridge University Press, CambridgeGoogle Scholar
  17. 17.
    Randle V, Engler O (2000) Introduction to texture analysis. CRC Press, New YorkGoogle Scholar
  18. 18.
    Venables JA, Binjaya R (1977) Philos Mag 35:1317CrossRefGoogle Scholar
  19. 19.
    Wright SI, Adams BL (1991) Textures Microstructures 14:273CrossRefGoogle Scholar
  20. 20.
    Wright SI, Adams BL (1992) Metall Trans A Phys Metall Mater Sci 23:759CrossRefGoogle Scholar
  21. 21.
    Greil P, Lifka T, Kaindl A (1998) J Eur Ceram Soc 18:1961CrossRefGoogle Scholar
  22. 22.
    Singh M, Martinez-Fernandez J, De Arellano-Lopez AR (2003) Curr Opin Solid State Mater Sci 7:247CrossRefGoogle Scholar
  23. 23.
    Bhagat RB, Singh M (1994) In: Singh M, Lewins D (eds) In-situ composites: science and technology. The Minerals, Metals and Materials Society, p 135Google Scholar
  24. 24.
    Gern FH, Kochendorfer R (1997) Compos Part A Appl Sci 28:355Google Scholar
  25. 25.
    Greil P (2001) J Eur Ceram Soc 21:105CrossRefGoogle Scholar
  26. 26.
    Sangsuwan P, Tewari SN, Gatica JE, Singh M, Dickerson R (1999) Metall Mater Trans A 30:933CrossRefGoogle Scholar
  27. 27.
    Gerwien ML (1986) In: Warucke R (ed) Gmelin handbook of inorganic chemistry, 8th edn. Springer-Verlag, BerlinGoogle Scholar
  28. 28.
    Grabmaier J, Ciszek TF (1981) Silicon. Springer-Verlag, BerlinGoogle Scholar
  29. 29.
    Hon MH, Davis RF (1979) J Mater Sci 14:2411 (DOI:  10.1007/BF00737031)
  30. 30.
    Weast RCE (1974) Handbook of chemistry and physics. CRC Press, ClevelandGoogle Scholar
  31. 31.
    Hon MH, Davis RF, Newbury DE (1980) J Mater Sci 15:2073 (DOI:  10.1007/BF00550634)
  32. 32.
    Fitzer E, Fritz W, Gadow R (1985) Chem Ing Tech 57:737CrossRefGoogle Scholar
  33. 33.
    Fitzer E, Gadow R (1986) Am Ceram Soc Bull 65:326Google Scholar
  34. 34.
    Zhou H, Singh RN (1995) J Am Ceram Soc 78:2456CrossRefGoogle Scholar
  35. 35.
    Pampuch R, Bialoskorski J, Walasek E (1987) Ceram Int 13:63CrossRefGoogle Scholar
  36. 36.
    Pampuch R, Walasek E, Bialoskorski J (1986) Ceram Int 12:99CrossRefGoogle Scholar
  37. 37.
    Hong JD, Davis RF (1980) J Am Ceram Soc 63:546CrossRefGoogle Scholar
  38. 38.
    Hong JD, Davis RF, Newbury DE (1981) J Mater Sci 16:2485 (DOI:  10.1007/BF01113585)Google Scholar
  39. 39.
    Hong JD, Hon MH, Davis RF (1979) Am Ceram Soc Bull 58:348Google Scholar
  40. 40.
    Bartlett RW, Nelson WE, Halden FA (1967) J Electrochem Soc 114:1149CrossRefGoogle Scholar
  41. 41.
    Crank J (1975) The mathematics of diffusion. Clarendon Press, OxfordGoogle Scholar
  42. 42.
    Scace RI, Slack GA (1959) J Chem Phys 30:1551CrossRefGoogle Scholar
  43. 43.
    Gnesin GG, Raichenko AI (1973) Poroshkovaya Metallurgiya 5:35Google Scholar
  44. 44.
    Kleykamp H, Schumacher G (1993) Ber Bunsen-Ges Phys Chem 97:799Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Francisco M. Varela-Feria
    • 1
  • Joaquín Ramírez-Rico
    • 1
  • Antonio R. de Arellano-López
    • 1
  • Julián Martínez-Fernández
    • 1
  • Mrityunjay Singh
    • 2
  1. 1.Departamento de Física de la Materia Condensada-ICMSEUniversidad de Sevilla-CSICSevillaSpain
  2. 2.Ohio Aerospace InstituteNASA Glenn Research CenterClevelandUSA

Personalised recommendations