Advertisement

Journal of Materials Science

, Volume 43, Issue 2, pp 748–758 | Cite as

Microstructural evolution and mechanical property in dual two-phase intermetallic alloys composed of geometrically close-packed Ni3 X (X: Al and V) containing Nb

  • Yasuyuki Kaneno
  • Wataru Soga
  • Hiroshi Tsuda
  • Takayuki Takasugi
Article

Abstract

Dual two-phase intermetallic alloys composed of geometrically close-packed (GCP) structures of Ni3Al (L12) and Ni3V (D022) containing Nb were investigated in terms of microstructural evolution during low-temperature annealing (aging) and the related mechanical properties. The eutectoid region, i.e. the prior Al phase (Ni solid solution) is composed of the lamellar-like structure consisting of Ni3Al (L12) and Ni3V (D022) even at an early aging stage, and then coarsen with increasing aging time. The lamellar-like structure tend to align along \( \langle {\text{001}}\rangle \) direction and on {001} plane in the prior A1 phase (or the L12 phase). In a wide range of temperature, the dual two-phase intermetallic alloys showed high yield and tensile strength, and also reasonable tensile ductility, accompanied with ductile fracture mode. The observed mechanical properties were less sensitive to the microstructural evolution during low-temperature annealing (aging), meaning that the present dual two-phase intermetallic alloy is promising for a new type of high-temperature structural material.

Keywords

Aging Time Ni3Al Tensile Elongation Superlattice Reflection Ni3V 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported in part by the Grant-in-aid for Scientific Research (B) from the Ministry of Education, Culture, Sports and Technology. Also, a part of this work was carried out under the Visiting Researcher’s Program of Advanced Research Center of Metallic Glasses, Institute for Materials Research, Tohoku University.

References

  1. 1.
    Van Vucht JHJ (1966) Less-Common Met 11:308CrossRefGoogle Scholar
  2. 2.
    Sinha AK (1969) Trans Met Soc AIME 245:911Google Scholar
  3. 3.
    Sinha AK (1972) Prog In Mater Sci Part 2 15:79Google Scholar
  4. 4.
    Tomihisa K, Kaneno Y, Takasugi T (2002) Intermetallics 10:247CrossRefGoogle Scholar
  5. 5.
    Ohira K, Kaneno Y, Takasugi T (2004) J Mater Sci 39:2295CrossRefGoogle Scholar
  6. 6.
    Tomihisa K, Kaneno Y, Takasugi T (2004) Intermetallics 12:317CrossRefGoogle Scholar
  7. 7.
    Ohira K, Kaneno Y, Takasugi T (2005) Mat Sci Eng A 399:332CrossRefGoogle Scholar
  8. 8.
    Fujita M, Kaneno Y, Takasugi T. Mat Sci Eng A (in press)Google Scholar
  9. 9.
    Nunomura Y, Kaneno Y, Tsuda H, Takasugi T (2004) Intermetallics 12:389CrossRefGoogle Scholar
  10. 10.
    Nunomura Y, Kaneno Y, Tsuda H, Takasugi T (2006) Acta Mater 54:851CrossRefGoogle Scholar
  11. 11.
    Shibuya S, Kaneno Y, Yoshida M, Takasugi T (2006) Acta Mater 54:861CrossRefGoogle Scholar
  12. 12.
    Shibuya S, Kaneno Y, Tsuda H, Takasugi T (2007) Intermetallics 15:338CrossRefGoogle Scholar
  13. 13.
    Shibuya S, Kaneno Y, Yoshida M, Shishido T, Takasugi T (2007) Intermetallics 15:119CrossRefGoogle Scholar
  14. 14.
    Soga W, Kaneno Y, Takasugi T (2006) Intermetallics 14:170CrossRefGoogle Scholar
  15. 15.
    Soga W, Kaneno Y, Yoshida M, Takasugi T (2007) Mat Sci Eng A (in press)Google Scholar
  16. 16.
    Pearson WB (1958) A handbook of lattice spacing and structures of metals and alloys, Pergamon press, p 378Google Scholar
  17. 17.
    Villars P, Calvert LD (1986) Pearson’s handbook of crystallography data for intermetallic phases, vol. 3. ASM, Metals Park, p 2907Google Scholar
  18. 18.
    Suzuki T, Mishima Y, Miura S (1989) ISIJ Int 29:1Google Scholar
  19. 19.
    Hagihara K, Nakano T, Umakoshi Y (2000) Acta Materialia 48:1469CrossRefGoogle Scholar
  20. 20.
    Hagihara K, Nakano T, Umakoshi Y (2003) Scripta Mater 48:577CrossRefGoogle Scholar
  21. 21.
    Hagihara K, Nakano T, Umakoshi Y (2003) Acta Mater 51:2623CrossRefGoogle Scholar
  22. 22.
    Tanner LE (1968) Phys Stat Sol 30:685CrossRefGoogle Scholar
  23. 23.
    Sihgh JB, Sundararaman M, Mukhopadhyay P, Prabhu N (2003) Scripta Mater 48:261CrossRefGoogle Scholar
  24. 24.
    Sihgh JB, Sundararaman M, Mukhopadhyay P , Prabhu N (2003) Intermetallics 11:83CrossRefGoogle Scholar
  25. 25.
    Suzuki A, Kojima H, Matsuo T, Takeyama M (2004) Intermetallics 12:969CrossRefGoogle Scholar
  26. 26.
    Bendersky LA, Biancaniello FS, Williams ME (1994) J Mater Res 9:3068CrossRefGoogle Scholar
  27. 27.
    Takeyama M, Kikuchi M (1998) Intermetallics 6:573CrossRefGoogle Scholar
  28. 28.
    Pope DP, Ezz SS (1984) Int Mater Rev 29:136Google Scholar
  29. 29.
    Stoloff NS (1989) Int Mater Rev 34:153Google Scholar
  30. 30.
    Yamaguchi M, Umakoshi Y (1990) Prog Mater Sci 34:1CrossRefGoogle Scholar
  31. 31.
    Hagihara K, Tanaka T, Nakano T, Umakoshi Y (2005) Acta Mater 53:5051CrossRefGoogle Scholar
  32. 32.
    von Mises R (1928) Z Ang Math Mech 8:161CrossRefGoogle Scholar
  33. 33.
    Hagihara K, Mori M, Umakoshi Y (2007) MRS Proc Publ 980:II05-20Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yasuyuki Kaneno
    • 1
  • Wataru Soga
    • 1
  • Hiroshi Tsuda
    • 1
  • Takayuki Takasugi
    • 1
    • 2
  1. 1.Department of Materials Science, Graduate School of EngineeringOsaka Prefecture UniversitySakaiJapan
  2. 2.Osaka Center for Industrial Materials Research, Institute for Materials ResearchTohoku UniversitySakaiJapan

Personalised recommendations