Journal of Materials Science

, Volume 43, Issue 3, pp 860–864 | Cite as

Production of beads like hollow nickel oxide nanoparticles using colloidal -gel electrospinning methodology

  • Nasser A. M. Barakat
  • Abd El-Nasser M. Omran
  • Santosh Aryal
  • Faheem A. Sheikh
  • Hyo Kyoung Kang
  • Hak Yong Kim


In the present study colloidal-gel electrospinning technique is proposed to produce new shape of nickel oxide hollow nanoparticles. In the colloidal-gel process, a colloidal precursor was prepared by dissolving nickel acetate tetra hydrate in ethanol at 352 K. The precursor was mixed with poly(vinyl acetate)/N, N-dimethylformamide (14 wt%). The polymer-precursor mixture was electrospun at relatively low voltage depending on the concentration of nickel acetate in the precursor. The obtained mat was dried under vacuum at 353 K for 24 h, and then sintered at 827 K for 3 h. The XRD and SEM results indicated that the proposed methodology produces pure nickel oxide hollow nanoparticles with beads-like form.


Nickel Oxide PVAc Vinyl Acetate Electrospinning Process Taylor Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the grant of post-doc program (the second-half term of 2006), Chonbuk National University (CNU), Jeonju 561-756, Republic of Korea.


  1. 1.
    Feldmann C, Jungk HO (2001) Angew Chem Int Ed 40:359-2CrossRefGoogle Scholar
  2. 2.
    Levin D, Ying JY (1997) Stud Surf Sci Catal 110:367CrossRefGoogle Scholar
  3. 3.
    Yoshio M, Todorov Y, Yamato K, Noguchi H, Itoh J, Okada M, Mouri T (1998) J Power Sources 74:46CrossRefGoogle Scholar
  4. 4.
    Yang HX, Dong QF, Hu XH (1999) J Power Sources 79:256CrossRefGoogle Scholar
  5. 5.
    Shao LS, Guan HY, Wen SB, Chen B, Yang XH, Dong J (2004) Chin Chem Lett 3:65Google Scholar
  6. 6.
    Miller EL, Rocheleau RE (1997) J Electrochem Soc 144:3072CrossRefGoogle Scholar
  7. 7.
    Guan H, Shao C, Wen S, Chen B, Gong J, Yang X (2003) Inorg Chem Commun 6:1302CrossRefGoogle Scholar
  8. 8.
    Tao D, Wei F (2004) Mater Lett 58:3226CrossRefGoogle Scholar
  9. 9.
    Wang YD, Ma CL, Sun XD, Li HD (2002) Inorg Chem Commun 5:751CrossRefGoogle Scholar
  10. 10.
    Xiang L, Deng XY, Jin Y (2002) Scripta Mater 47:219CrossRefGoogle Scholar
  11. 11.
    Deki S, Yanagimito H, Hiraoka S, Akamatsu K, Gotoh K (2003) Chem Mater 15:4916CrossRefGoogle Scholar
  12. 12.
    Dharmaraj N, Prabu P, Nagarajan S, Kim CH, Park JH, Kim HY (2006) Mater Sci Eng B 128:11CrossRefGoogle Scholar
  13. 13.
    Santosh A, Remant BKC, Myung SK, Dharmaraj N, Kim HY (2007) Mater Lett 61:4225CrossRefGoogle Scholar
  14. 14.
    Taylor GI (1969) Proc R Soc London Ser A 313:453CrossRefGoogle Scholar
  15. 15.
    Doshi J, Reneker DH (1995) J Electrostat 35:151-0CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nasser A. M. Barakat
    • 1
    • 2
  • Abd El-Nasser M. Omran
    • 1
  • Santosh Aryal
    • 3
  • Faheem A. Sheikh
    • 1
  • Hyo Kyoung Kang
    • 4
  • Hak Yong Kim
    • 1
    • 4
  1. 1.Department of Bionano System EngineeringCollege of Engineering, Chonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Chemical Engineering Department, Faculty of EngineeringEl-Minia UniversityEl-MiniaEgypt
  3. 3.Center for Healthcare Technology DevelopmentChonbuk National UniversityJeonjuRepublic of Korea
  4. 4.Department of Textile EngineeringChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations