Skip to main content
Log in

Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from the Santa Rosa mylonite zone

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is shown that the deformation state of a granitic rock has a profound impact on the long-term stability of concrete, if used as aggregate due to enhanced susceptibility to the alkali-silica reaction. An investigation of the microstructure of granitic rocks from the Santa Rosa mylonite zone in southern California with transmission electron microscopy and neutron diffraction revealed that, as these rocks become progressively deformed from granite to mylonite and phyllonite, accompanied by grain size reduction, the dislocation density in quartz (investigated with TEM) increases and preferred orientation of biotite (determined by neutron diffraction) becomes stronger. While the contribution of dislocations to the bulk energy increase of quartz is low, dislocations provide favorable sites for dissolution and precipitation to occur. A comparison with ASTM C 1260 expansion tests of these same samples indicates that expansion increases with the dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gogte BS (1973) Eng Geol 7:135

    Article  Google Scholar 

  2. Grattan-Bellew PE (1986) Proceedings of the 7th international conferenc on alkali-aggregate reaction. Park Ridge, NJ, p 434

  3. Grattan-Bellew PE (1992) Proceedings of the 9th international conference on alkali-aggregate reaction in concrete, Concrete Society Publication CS 104, vol 1. London, p 383

  4. French WJ (1992) Proceedings of the 9th international conference on alkali-aggregate reaction in concrete, Concrete Society Publication CS 104, vol 1. London, p 338

  5. Kerrick DM, Hooton RD (1992) Cement Concrete Res 22:949

    Article  CAS  Google Scholar 

  6. Monteiro PJM, Shomglin K, Wenk H-R, Hasparyk NP (2001) ACI Mater J 98:179

    CAS  Google Scholar 

  7. Wenk H-R (1998) J Struct Geol 20:559

    Article  Google Scholar 

  8. Goodwin LB, Wenk H-R (1995) J Struct Geol 17:689

    Article  Google Scholar 

  9. Wenk H-R, Pannetier J (1990) J Struct Geol 12:177

    Article  Google Scholar 

  10. O’Brien DK, Wenk H-R, Ratschbacher L, You Z (1987) J Struct Geol 9:719

    Article  Google Scholar 

  11. Hutchison CS (1975) Schweizerische Mineralogische und Petrographische Mitteilungen 55:243

    CAS  Google Scholar 

  12. American Society for Testing and Materials (2002) Standard test method for potential alkali reactivity of aggregates (Mortar-Bar method), ASTM C 1260-01, Annual book of ASTM standards, vol 04.02. American Society for Testing and Materials, Philadelphia

  13. Wenk H-R, Matthies S, Donovan J, Chateigner D (1998) J Appl Crystallogr 31:262

    Article  CAS  Google Scholar 

  14. Wenk H-R, Lutterotti L, Vogel S (2003) Nucl Instr Methods A 515:575

    Article  CAS  Google Scholar 

  15. Lutterotti L, Matthies S, Wenk H-R (1999) Int U Crystallogr Comm Powder Diffr Newsl 21:14

    Google Scholar 

  16. Matthies S, Vinel G (1982) Phys Status Solidi B 112:K111

    Article  Google Scholar 

  17. Pehl J, Wenk H-R (2005) J Struct Geol 27:1741

    Article  Google Scholar 

  18. Anderson GM, Burnham CW (1965) Am J Sci 263:494

    Article  CAS  Google Scholar 

  19. Liddell NA, Phakey PP, Wenk H-R (1976) In: Wenk H-R (ed) Electron microscopy in mineralogy. Springer Verlag, Heidelberg, p 419

  20. Blum AE, Yund RA, Lasaga AC (1990) Geochim Cosmochim Acta 54:283

    Article  CAS  Google Scholar 

  21. Van Der Hoek B, Van Der Eerden JP, Bennema P (1982) J Cryst Growth 56:621

    Article  Google Scholar 

  22. Hirth JP, Lothe J (1982) Theory of dislocations. John Wiley and Sons, New York

    Google Scholar 

  23. Wintsch RP, Dunning J (1985) J Geophys Res 90:3649

    Article  CAS  Google Scholar 

  24. Heinisch HL, Sines G, Goodman JW, Kirby SH (1975) J Geophys Res 80:1885

    Article  Google Scholar 

  25. Robie RA, Hemingway BS, Fisher JR (1978) United States Geological Survey Bulletin 1452

  26. Lasaga AC, Blum AE (1986) Geochim Cosmochim Acta 50:2363

    Article  CAS  Google Scholar 

  27. Somorjai GA (1994) Introduction to surface chemistry and catalysis. John Wiley and Sons, New York

    Google Scholar 

  28. Zimonyi G (1957) Acta Phys Hungaria 8:119

    Article  CAS  Google Scholar 

  29. Augustine F, Hale DR (1960) J Phys Chem Solids 13:344

    Article  CAS  Google Scholar 

  30. Burton WK, Cabrera N, Frank FC (1951) Philos Trans R Soc London A 243:299

    Article  Google Scholar 

  31. Cabrera N, Levine MM (1956) Philos Mag 1:450

    Article  CAS  Google Scholar 

  32. Lasaga AC (1983) Proceedings of the 4th international symposium on water–rock interactions, p 269

  33. Brantley SL, Crane SR, Credar DA, Hellmann R, Stallard R (1986) Geochim Cosmochim Acta 50:2349

    Article  CAS  Google Scholar 

  34. Brantley SL, Crane SR, Credar DA, Hellmann R, Stallard R (1986) Geochem Process Miner Surf. In: Davis JA, Hayes KF (eds) Amer Chem Soc Symposium Series 323. Washington DC, p 634

  35. Murr LE, Hiskey JB (1981) Metall Trans 12B:255

    Article  CAS  Google Scholar 

  36. Casey WC, Carr MJ, Graham RA (1988) Geochim Cosmochim Acta 52:1545

    Article  CAS  Google Scholar 

  37. Holdren GR, Casey WH, Westrich HR, Carr M, Boslough M (1988) Chem Geol 70:79

    Article  Google Scholar 

  38. Schott J, Brantley S, Credar D, Guy C, Borcsik M, Willaime C (1989) Geochim Cosmochim Acta 53:373

    Article  CAS  Google Scholar 

  39. Blum AE, Lasaga AC, Yund RA (1990) Geochim Cosmochim Acta 54:283

    Article  CAS  Google Scholar 

  40. Gratz AJ, Bird P, Quiro GB (1990) Geochim Cosmochim Acta 54:2911

    Article  CAS  Google Scholar 

  41. Liu M, Yund RA, Tullis J, Toper L, Navrotsky A (1995) Phys Chem Minerals 22:67

    CAS  Google Scholar 

  42. Boullier AM, Guegen Y (1975) Contrib Mineral Petrol 23:128

    Google Scholar 

  43. Behrmann JH, Mainprice D (1997) Tectonophysics 140:297

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge access to neutron scattering facilities at Institut Laue-Langevin in Grenoble and the Lujan Center, Los Alamos National Laboratory, as well as transmission electron microscopes at the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory. We also are appreciative for financial support from the National Science Foundation grant CMS 062464 and EAR 0337006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Rudolf Wenk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenk, HR., Monteiro, P.J.M. & Shomglin, K. Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from the Santa Rosa mylonite zone. J Mater Sci 43, 1278–1285 (2008). https://doi.org/10.1007/s10853-007-2175-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2175-8

Keywords

Navigation