Advertisement

Journal of Materials Science

, Volume 43, Issue 12, pp 4143–4151 | Cite as

Production of sintered materials from air pollution control residues from waste incineration

  • C. Dimech
  • C. R. Cheeseman
  • S. Cook
  • J. Simon
  • A. R. Boccaccini
Rees Rawlings Festschrift

Abstract

Air pollution control residues from waste incineration have been washed to remove excess chloride and other soluble salts and blended with combinations of soda lime glass and waste electrostatic precipitator dust containing boric oxide from the fibre-glass industry. Homogenous fine powder mixes have been pressed and sintered at temperatures between 900 and 1000 °C. The physical properties and microstuctural characteristics of the glass–ceramics formed have been assessed. The results show that it is possible to produce a dense glass–ceramic material containing wollastonite and gehlenite crystalline phases with a hardness of 4.5 GPa. The high density and hardness means that the glass–ceramic may have a potential use in high value construction products.

Keywords

Municipal Solid Waste Inductively Couple Plasma Atomic Emission Spectroscopy Wollastonite Sintered Sample Inductively Couple Plasma Atomic Emission Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was completed with financial support from EPSRC (UK) and Rio Tinto Minerals/Borax Europe Ltd through an Industrial Case Award from the Resource Efficiency Knowledge Transfer Network (KTN), formerly the Mini-Waste Faraday Partnership. The experimental assistance of staff and colleagues at Imperial College London and Rio Tinto Minerals (Guildford, UK) is greatly appreciated. Mr Peter Lewis is acknowledged for the provision of APC residue samples.

References

  1. 1.
    Environmental Services Association (2005) Draft APC residue case study, DEFRA, http://www.defra.gov.uk/environment/waste/hazforum/pdf/hwf-3-5iv.pdf, as on March 2005
  2. 2.
    Abanades S, Flamant G, Gagnepain B, Gauthier D (2002) Waste Manage Res 20(1):55CrossRefGoogle Scholar
  3. 3.
    Lee PH, Nasserzadeh V, Swithenbank J, Laming JV, Goodfellow J, Mcleod C, Argent BB, Lawrence D, Garrod N (1999) Process Saf Environ Protect 77(B4):212CrossRefGoogle Scholar
  4. 4.
    He P-J, Zhang H, Zhang C-G, Lee D-J (2004) J Hazard Mater B116:229CrossRefGoogle Scholar
  5. 5.
    European Waste Catalogue (2000) In: 2000/532/EC Google Scholar
  6. 6.
    Geysen D, Vandecasteele C, Jaspers M, Wauters G (2004) J Hazard Mater 107(3):131CrossRefGoogle Scholar
  7. 7.
    Alba N, Vazquez E, Gasso S, Baldasano JM (2001) Waste Manage 21(4):313CrossRefGoogle Scholar
  8. 8.
    Todorovic J, Ecke H, Lagerkvist A (2003) Waste Manage 23(7):621CrossRefGoogle Scholar
  9. 9.
    Barna R, Rethy Z, Imyim A, Perrodin Y, Moszkowicz P, Tiruta-Barna L (2000) Waste Manage 20(8):741CrossRefGoogle Scholar
  10. 10.
    Rouchotas E (2001) MSc thesis, Department of Civil and Environmental Engineering, Imperial College LondonGoogle Scholar
  11. 11.
    Wang KS, Chiang KY, Lin KL, Sun CJ (2001) Hydrometallurgy 62(2):73CrossRefGoogle Scholar
  12. 12.
    Chimenos JM, Fernandes AI, Cervantes A, Miralles L, Fernandes MA, Espiell F (2005) Waste Manage 25(7):686CrossRefGoogle Scholar
  13. 13.
    Abbas Z, Moghaddam AP, Steenari BM (2003) Waste Manage 23(4):291Google Scholar
  14. 14.
    Boccaccini AR, Wu JP, Rawlings RD (2006) J Mater Sci 41(3):733. doi: 10.1007/s10853-006-6554-3 CrossRefGoogle Scholar
  15. 15.
    Colombo P, Brusatin G, Bernardo E, Scarinci G (2003) Curr Opin Solid State Mat Sci 7(3):225CrossRefGoogle Scholar
  16. 16.
    Boccaccini AR, Bucker M, Bossert J, Marszalek K (1997) Waste Manage 17(1):39CrossRefGoogle Scholar
  17. 17.
    Barbieri L, Lancellotti I, Manfredini T, Queralt I, Rincon JM, Romero M (1999) Fuel 78(2):271CrossRefGoogle Scholar
  18. 18.
    Olgun A, Erdogan Y, Ayhan Y, Zeybek B (2005) Ceram Int 31:153CrossRefGoogle Scholar
  19. 19.
    Shao H, Liang K, Peng F, Zhou F, Hu A (2005) Minerals Eng 18(6):635CrossRefGoogle Scholar
  20. 20.
    Catarino L, Sousa J, Martins IM, Vieira MT, Oliveira MM (2003) J Mater Process Technol 143:843CrossRefGoogle Scholar
  21. 21.
    Pisciella P, Crisucci S, Karamanov A, Pelino M (2001) Waste Manage 21:1CrossRefGoogle Scholar
  22. 22.
    Rozenstrauha I, Wu JP, Boccaccini AR (2005) Glass Technol 46(3):248Google Scholar
  23. 23.
    Yun YH, Yoon CH, Kim YH, Kim CK, Kim SB, Kwon JT, Kang BA, Hwang KS (2002) Ceram Int 28(5):503CrossRefGoogle Scholar
  24. 24.
    Barbieri L, Corradi A, Lancellotti I, Pellacani GC, Boccaccini AR (2003) Glass Technol 44(5):184Google Scholar
  25. 25.
    Boccaccini AR, Schawohl J, Hern H, Schunck B, Rincon JM, Romero M (2000) Glass Technol 41(3):99Google Scholar
  26. 26.
    Boccaccini AR, Kopf M, Stumpfe W (1995) Ceram Int 21(4):231CrossRefGoogle Scholar
  27. 27.
    Romero M, Rincon JM, Rawlings RD, Boccaccini AR (2001) Mater Res Bull 36(1–2):383CrossRefGoogle Scholar
  28. 28.
    Rincon JM, Romero M, Boccaccini AR (1999) J Mater Sci 34(18):4413. doi: 10.1023/A:1004620818001 CrossRefGoogle Scholar
  29. 29.
    Hollander HI, Plumley AL, Decesare RS (1996) J Hazard Mater 47(1–3):369CrossRefGoogle Scholar
  30. 30.
    Kim JM, Kim HS (2004) J European Ceram Soc 24:2373CrossRefGoogle Scholar
  31. 31.
    Wexell D, Vitrification of ash from waste-to-energy incinerators, Part II. Cold crown melting and parameters for scale-up, Pollution Prevention Resource Center Corning Inc., http://www.pprc.org/pprc/rpd/statefnd/nyschwm/vitrific.html, as on 05/08/2005,
  32. 32.
    Cheeseman CR, Monteiro Da Rocha S, Sollars C, Bethanis S, Boccaccini AR (2003) Waste Manage 23(10):907CrossRefGoogle Scholar
  33. 33.
    Rawlings RD, Boccaccini AR (2004) Glass Technol 45(2):108Google Scholar
  34. 34.
    Borax Consolidated Limited (1965) In: Glasses, 3rd ed., London, Borax Consolidated London, p 83Google Scholar
  35. 35.
    Lundtorp K, Jensen DL, Sorensen MA, Christensen TH, Mogensen EPB (2002) Waste Manage Res 20(1):69Google Scholar
  36. 36.
    Cheeseman CR, Sollars CJ, Mcentee S (2003) Resour Conserv Recycl 40(1):13CrossRefGoogle Scholar
  37. 37.
    Tsai C-C, Wang K-S, Chiou I-J (2006) J Hazard Mater 134(1–3):87CrossRefGoogle Scholar
  38. 38.
    Romero M, Rawlings RD, Rincon JM (1999) J Eur Ceram Soc 19(12):2049CrossRefGoogle Scholar
  39. 39.
    Esposito L, Tucci A, Naldi D (2005) J Eur Ceram Soc 25(9):1487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • C. Dimech
    • 1
  • C. R. Cheeseman
    • 2
  • S. Cook
    • 3
  • J. Simon
    • 3
  • A. R. Boccaccini
    • 1
  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Department of Civil and Environmental EngineeringImperial College LondonLondonUK
  3. 3.Rio TintoLondonUK

Personalised recommendations