Journal of Materials Science

, Volume 43, Issue 3, pp 820–823 | Cite as

Effect of microwave irradiation on crystalline structure and dielectric property of PVDF/PZT composite

  • Qijia He
  • Aimin Zhang


The crystalline structure change and dielectric performance of microwave-irradiated PVDF/PZT composites were studied by FTIR, DSC, DMTA, and DEA. The dielectric analysis suggests that the dielectric permissivity and loss reduce, which is useful for improving the sensitivity of composites used in passive transducers. The structure analysis results show that the microwave irradiation promotes crystalline transformation of PVDF from α to β; The crystallinity of PVDF in PVDF/PZT composites increases and ΔT decreases; the DMTA measurements illustrate that the value of E′ and tanδ peak increases after irradiation.


PVDF Dielectric Loss Microwave Irradiation Irradiation Time Lead Zirconium Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for the support from the Special Funds from Major State Basic Research Projects of China (G1999064809) and the National Natural Science Foundation of China (Nos.50233010 and 29904004).


  1. 1.
    Gregorio R, Cestari M, Bernardino FE (1996) J Mater Sci 31:2925, doi:  10.1007/BF0035600310.1016/j.jhydrol.2006.06.008
  2. 2.
    Newnham RE, Skinner DP, Cross LE (1978) Mater Res Bull 13(7):525CrossRefGoogle Scholar
  3. 3.
    Sinha D, Pillai PKC (1990) J Mater Sci 25:944Google Scholar
  4. 4.
    Wu GZ, Zhang C, Miura T, Asai S, Sumita M (2001) J Appl Polym Sci 80:1063CrossRefGoogle Scholar
  5. 5.
    Sasabe H, Saito S, Asahina M, Kakutani H (1969) J Polym Sci Part A-2 7:1405CrossRefGoogle Scholar
  6. 6.
    Wang SB, Xu TX, Han JC, Du SY (2000) Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica (in Chinese) 17(4):3Google Scholar
  7. 7.
    Jovan M, Jo-Wing S, Kwei TK (1997) Macromolecules 30:3042CrossRefGoogle Scholar
  8. 8.
    Hah B, Wendorff J (1985) Macromolecules 18:718CrossRefGoogle Scholar
  9. 9.
    Zhang AM, Li HL, He QJ, Xu X (2002) Gaofenzi Cailiao Kexue Yu Gongcheng/Poly Mater Sci Eng (in Chinese) 18(3):98Google Scholar
  10. 10.
    Rosenberg Y, Sigmann A, Narkis M, Shkolnik S (1991) J Appl Polym Sci 43:535CrossRefGoogle Scholar
  11. 11.
    Zhang SH, Neese B, Ren KL, Chu BJ, Zhang QM (2006) J Appl Phys 100:44113CrossRefGoogle Scholar
  12. 12.
    Petr J (1972) Cesk Casopis Fyz 22:219Google Scholar
  13. 13.
    Luis I, David P (1998) J Appl Polym Sci 67:1819CrossRefGoogle Scholar
  14. 14.
    Won-Ki Lee, Chang-Sik Ha (1998) Polymer 39(26):7131CrossRefGoogle Scholar
  15. 15.
    Lanceros-Mendez S, Mano JF, Costa AM, Schmidt VH (2001) J Macromol Sci Phys B40:517Google Scholar
  16. 16.
    Lovinger AJ, Wang TT (1979) Polymer 20:725CrossRefGoogle Scholar
  17. 17.
    Ibarra L, Panos D (1998) J Appl Polym Sci 67:1819CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.The State Key Laboratory of Polymer Materials Engineering of ChinaPolymer Research Institute of Sichuan UniversityChengduChina

Personalised recommendations