Journal of Materials Science

, Volume 43, Issue 1, pp 123–131 | Cite as

Orientation relations between carbon nanotubes grown by chemical vapour deposition and residual iron-containing catalysts

  • Che-Yi Wen
  • Chun-Chia Huang
  • Huy-Zu Cheng
  • Hong-Yang Lu


Orientation relationships between the growth direction of carbon nanotubes and encapsulated residual iron-containing particles have been determined using transmission electron microscopy. The nanotubes that are prepared by Fe-catalysed chemical vapour deposition on sol–gel Fe(NO3)3-tetraethyl orthosilicate substrates are the helical multiwall type. Nanoscale particles of both the low-temperature α-Fe (ferrite) and high-temperature γ-Fe (austenite) were found in the cavity of the carbon nanotubes with \( {\left\langle {001} \right\rangle }_{\alpha } \), \( {\left\langle {011} \right\rangle }_{\alpha } \) and \( {\left\langle {110} \right\rangle }_{\gamma } \) parallel to the tube growth direction, respectively. Cementite Fe3C, the most abundant Fe-containing phase in present samples was also found to be entrapped in nanotubes with \( {\text{[100]}}_{{{\text{Fe}}_{{\text{3}}} {\text{C}}}} \) or \( {\text{[101]}}_{{{\text{Fe}}_{{\text{3}}} {\text{C}}}} \) parallel to the tube axis. The metastable retention of γ-Fe particles at room temperature is ascribed to the strain energy induced at the particle-nanotube interface due to volume expansion upon the γ- → α-Fe phase transformation. The decomposition of initially high aspect-ratio, rod-shape particles into a string of ovulation, while encapsulated in carbon nanotubes is accounted for by the Rayleigh instability. Ovulation leading to reduced particle size has also contributed to increase the surface energy term that counterbalances the total free energy change of phase transformation from γ- to α-Fe and further aids to the metastable retention of γ-Fe.


Cementite Orientation Relationship Tube Axis Matrix Constraint Rayleigh Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the National Science Council of Taiwan for funding through contracts NSC 93-2216-E-110-015, 94-2216-E-110-004 and 95-2221-E-110-033.


  1. 1.
    Ren ZF, Huang ZP, Provencio PN (1998) Science 282:1105CrossRefGoogle Scholar
  2. 2.
    Lee CJ, Kim DW, Lee TJ, Choi YC, Park YS, Lee YH, Choi WB, Lee NS, Park GS, Kim JM (1997) Chem Phys Lett 312:461CrossRefGoogle Scholar
  3. 3.
    Pan ZW, Xie SS, Zhou WY, Wang G (1999) Chem Phys Lett 299:97CrossRefGoogle Scholar
  4. 4.
    Kim H, Sigmund W (2000) Carbon 43:1743CrossRefGoogle Scholar
  5. 5.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  6. 6.
    Ebbesen TW, Ajayan PM (2000) Nature 358:220CrossRefGoogle Scholar
  7. 7.
    Qin LC, Iijima S (1997) Chem Phys Lett 269:65–71CrossRefGoogle Scholar
  8. 8.
    AuBuchon JF, Daraio C, Chen LH, Gapin AI, Jin S (2005) J Phys Chem B Lett 109:24215CrossRefGoogle Scholar
  9. 9.
    Strong KL, Anderson DP, Lafdi K, Kuhn JN (2003) Carbon 41:1477CrossRefGoogle Scholar
  10. 10.
    Kim H, Sigmund W (2005) J Cryst Growth 276:594CrossRefGoogle Scholar
  11. 11.
    Mühl T, Elefant D, Graff A, Kozhuhaova R, Leonhardt A, Mönch I, Ritschel M, Simon P, Groudeva-Zotova S, Schnider CM (2003) J Appl Phys 93:7894CrossRefGoogle Scholar
  12. 12.
    Qiu J, Li Q, Wang Z, Sun Y, Zhang H (2006) Carbon 44:2565CrossRefGoogle Scholar
  13. 13.
    Klein C, Hurlbut CS Jr (1993) Manual of Mineralogy, 21st edn. J. Wiley, New York, p 449Google Scholar
  14. 14.
    Zhou D, Fleming RM, Murphy DW, Chen CH, Haddon RC, Ramirez AP, Glarum SH (1994) Science 263:1744CrossRefGoogle Scholar
  15. 15.
    Zhang XB, Zhang XF, Amelinckx S, van Tendeloo G, van Landuyt J (1994) Ultramicroscopy 54:237CrossRefGoogle Scholar
  16. 16.
    Zhang XF, Zhang XB, van Tendeloo G, Amelinckx S, Op de Beeck M, van Landuyt J (1993) J Cryst Growth 130:368CrossRefGoogle Scholar
  17. 17.
    Qin LC, Iijima S, Kataura H, Maniwa Y, Suzuki S, Achiba Y (1997) Chem Phys Lett 268:101CrossRefGoogle Scholar
  18. 18.
    Bernaerts D, Zettl A, Chopra NG, Thess A, Smalley RE (1998) Solid Stat Comm 105:145CrossRefGoogle Scholar
  19. 19.
    Liu M, Cowley JM (1994) Ultramicroscopy 53:333CrossRefGoogle Scholar
  20. 20.
    Prados C, Crespo P, Gonzalez JM, Hernando A, Marco JF, Gancedo R, Grobert N, Terrones M, Walton RM, Kroto HW (2002) Phys Rev B 65:113405CrossRefGoogle Scholar
  21. 21.
    Chipman J (1972) Metall Trans 3:55CrossRefGoogle Scholar
  22. 22.
    Kim H, Kaufman MJ, Sigmund WM, Jacques D, Andrews R (2003) J Mater Res 18:1104Google Scholar
  23. 23.
    Heuer AH (1987) J Am Ceram Soc 70:689CrossRefGoogle Scholar
  24. 24.
    Green DJ, Hannink RHJ, Swain MV (1989) Transformation toughening of ceramics. CRC Press, Boca Ranton, FL, p 17Google Scholar
  25. 25.
    Garive RC (1965) J Chem Phys 69:1238CrossRefGoogle Scholar
  26. 26.
    Hsiang HI, Yen FS (1996) J Am Ceram Soc 79:1053CrossRefGoogle Scholar
  27. 27.
    Lord Rayleigh (1878) Proc London Math Soc 4:4CrossRefGoogle Scholar
  28. 28.
    Nichols FA (1976) J Mater Sci 11:1077CrossRefGoogle Scholar
  29. 29.
    Cahn JW (1979) Script Metall 13:1069CrossRefGoogle Scholar
  30. 30.
    Gupta TK (1978) J Am Ceram Soc 61:191CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Che-Yi Wen
    • 1
  • Chun-Chia Huang
    • 1
  • Huy-Zu Cheng
    • 2
  • Hong-Yang Lu
    • 1
  1. 1.Centre for NanoscienceInstitute of Materials Science and Engineering, National Sun Yat-Sen UniversityKaohsiungTaiwan
  2. 2.Department of Materials EngineeringI-Shou UniversityKaohsiungTaiwan

Personalised recommendations