Journal of Materials Science

, Volume 43, Issue 1, pp 316–323 | Cite as

Correlation between ultrasonic shear wave velocity and Poisson’s ratio for isotropic porous materials

  • K. K. Phani


A new correlation between ultrasonic shear wave velocity and Poisson’s ratio has been established for isotropic porous material based on physical acoustic theory. Poisson’s ratio may decrease, increase or remain unchanged with decrease in shear wave velocity depending on pore-shape and Poisson’s ratio of the bulk solid. In case of decreasing Poisson’s ratio with decreasing shear wave velocity, it passes through a minimum and then increases again to reach a limiting value of 0.5. It has been further demonstrated that the Poisson’s ratio versus porosity relation deduced from the proposed correlation agrees with the experimental data extremely well.


Shear Wave Velocity Shear Velocity Ultrasonic Velocity Pore Geometry Uranium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is thankful to his colleague Dr. D. Sanyal for helpful discussions and suggestions. He also thanks Director, CGCRI for his permission to publish this article.


  1. 1.
    Kumar A, Jayakumar T, Raj B, Ray KK (2003) Acta Mater 51:2417CrossRefGoogle Scholar
  2. 2.
    Dunn ML, Ledbetter H (1995) J Mater Res 10:2715CrossRefGoogle Scholar
  3. 3.
    Roth DJ, Stang DB, Swickward SM, DeGuire MR (1990) NASA Technical Memorandum 102501Google Scholar
  4. 4.
    Yeheskel O, Shokhat M, Ratzker M, Dariel P (2001) J Mater Sci 36:1219CrossRefGoogle Scholar
  5. 5.
    Panakkal JP, Willems H, Arnold W (1990) J Mater Sci 25:1397Google Scholar
  6. 6.
    Martin LP, Dadon D, Rosen M (1996) J Am Ceram Soc 79:1281CrossRefGoogle Scholar
  7. 7.
    Green DJ, Nader C, Brezny R (1990) Ceram Trans 7345Google Scholar
  8. 8.
    Panakkal JP (1991) IEEE Trans Ferroelec Freq Control 38:161CrossRefGoogle Scholar
  9. 9.
    Boisson J, Platon F, Boch P (1976) Ceramurgia 674Google Scholar
  10. 10.
    Thorp JS, Bushell TG (1985) J Mater Sci 20:2265CrossRefGoogle Scholar
  11. 11.
    Adachi T, Sakka S (1990) J Mater Sci 25:4732CrossRefGoogle Scholar
  12. 12.
    Asmani M, Kermel C, Leriche A, Ourak M (2001) J Eur Ceram Soc 21:1081CrossRefGoogle Scholar
  13. 13.
    Nagarajan A (1971) J Appl Phys 42:3693CrossRefGoogle Scholar
  14. 14.
    Chang LS, Chuang TS, Wei WJ (2000) Mater Char 45:221CrossRefGoogle Scholar
  15. 15.
    Kulkarni N, Moudgil B, Bhardwaj M (1994) Am Ceram Soc Bull 73:146Google Scholar
  16. 16.
    Panakkal JP, Ghosh JK (1984) J Mat Sci Lett 3:935CrossRefGoogle Scholar
  17. 17.
    Rice RW (1998) Porosity in Ceramics. Marcel Dekker Inc., New YorkGoogle Scholar
  18. 18.
    Anderson OL, Schreiber E, Lieberman RC, Soga N (1968) Rev Geophys 6:491Google Scholar
  19. 19.
    Hagiwara H, Green DJ (1987) J Am Ceram Soc 70:811CrossRefGoogle Scholar
  20. 20.
    Wachtman JB, Wheat ML, Anderson HJ, Bates JL (1965) J Nucl Mater 16:39CrossRefGoogle Scholar
  21. 21.
    Padel A, Novion CD (1969) J Nucl Mater 33:40CrossRefGoogle Scholar
  22. 22.
    Boocock J, Furzer AS, Matthews JR (1972) AERE Rep. No. M 2565Google Scholar
  23. 23.
    Panakkal JP, Ghosh JK, Roy PR (1984) J Phys D: Appl Phys 17:1791CrossRefGoogle Scholar
  24. 24.
    Gatt J-M, Monerie Y, Laux D, Baron D (2005) J Nucl Mater 336:145CrossRefGoogle Scholar
  25. 25.
    Phani KK (1996) J Mater Sci 31:262CrossRefGoogle Scholar
  26. 26.
    Phani KK, Sanyal D (2005) J Mater Sci 40:5685CrossRefGoogle Scholar
  27. 27.
    Ashkin D, Haber RA, Wachtman JB (1990) J Am Ceram Soc 73:3376CrossRefGoogle Scholar
  28. 28.
    Arnold M, Boccaccini AR, Ondracek G (1996) J Mater Sci 31:1643CrossRefGoogle Scholar
  29. 29.
    Phani KK, Maitra AK (1994) J Mater Sci 29:4415CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Central Glass & Ceramic Research InstituteKolkataIndia

Personalised recommendations