Advertisement

Journal of Materials Science

, Volume 43, Issue 7, pp 2179–2188 | Cite as

Liquefaction kinetics of cellulose treated by hot compressed water under variable temperature conditions

  • Eiji Kamio
  • Hisayoshi Sato
  • Susumu Takahashi
  • Hidehiko Noda
  • Chouji Fukuhara
  • Takanari Okamura
Novel Routes of Advanced Materials Processing and Applications

Abstract

In this study, we investigate a process for liquefaction of cellulose with hot compressed water as a pre-treatment for a compact gasification process of cellulose. Experiments were carried out using a batch reactor with a temperature controller. The temperature profile for heating was controlled in a proportional relationship with time. Cellulose was drastically decomposed and liquefied when the maximum temperature was set at over ∼513 K. It decomposed to oligosaccharides, monosaccharides and pyrolysis products such as glyceraldehydes and 5-hydroxymethyl-2-furaldehyde. Theoretical treatment was investigated by considering the following stepwise processes: decompositions of I. cellulose to oligosaccharides, II. oligosaccharides to monosaccharides and pyrolysis products and III. monosaccharides to pyrolysis products. In these steps, step I is a heterogeneous reaction consists of: (a) Diffusion of water monomer to a cellulose surface and (b) Hydrolysis reaction of water monomer with a cellulose molecule at the surface. The temperature dependence of the rate constants was expressed by the Arrhenius relationship. The calculated result showed good correlation to the experimental data. The results suggest that it is possible to estimate the decomposition of cellulose by hot compressed water in a batch reactor that requires slow heating process.

Keywords

Cellulose High Performance Liquid Chromatography Liquefaction Pyrolysis Product Supercritical Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Cb

Concentration of water monomer in the bulk (mol/m3)

Ce

Concentration of chemicals after the reaction (mol/m3)

Ci

Concentration of chemicals (mol/m3)

Cs

Concentration of water monomer at the surface of cellulose particle (mol/m3)

DP

Degree of polymerization

Eai

Activation energy (kJ/mol)

R

Gas constant (J/(mol K))

T

Temperature (K)

Tinit

Initial temperature (K)

Tmax

Maximum temperature set as an experimental condition (K)

V

Volume of the reactor (m3)

WA1

Mass transfer rate of water monomer (mol/s)

WA2

Hydrolysis reaction rate at the surface of a cellulose particle (mol/s)

h

Time interval set for the calculation of the fourth-order Runge-Kutta method (s)

k0i

Frequency factor (−)

k1

Apparent rate constant of cellulose decomposition (mol1/3/(m s))

k2

Rate constant of Eq. 5 (1/s)

k3

Rate constant of Eq. 6 (1/s)

k4

Rate constant of Eq. 7 (1/s)

kc

Mass transfer coefficient of water monomer through the aqueous film surrounding a cellulose particle (m/s)

ks

First order rate constant of hydrolysis reaction for cellulose decomposition (m/s)

m0

Loaded weight of cellulose particle (g)

r

Radial position of cellulose surface (m)

r0

Radius of unreacted cellulose particle (m)

r1

Reaction rate of elementary process shown as Eq. 4 (mol/(m3 s))

r2

Reaction rate of elementary process shown as Eq. 5 (mol/(m3 s))

r3

Reaction rate of elementary process shown as Eq. 6 (mol/(m3 s))

r4

Reaction rate of elementary process shown as Eq. 7 (mol/(m3 s))

rA

Apparent reaction rate of water monomer for unit cellulose particle (mol/s)

rB

Apparent reaction rate of cellulose molecule for unit cellulose particle (mol/s)

rCel

Decomposition rate of cellulose particle (mol/(m3 s))

rOligo,d2

Decomposition rate of oligosaccharides to monosaccharides (mol/(m3 s))

rOligo,d4

Decomposition rate of oligosaccharides to pyrolysis products (mol/(m3 s))

rPyro,f3

Formation rate of pyrolysis products from monosaccharides (mol/(m3 s))

rPyro,f4

Formation rate of pyrolysis products from oligosaccharides (mol/(m3 s))

ri

Overall reaction rate of chemicals (mol/(m3 s))

ri,d

Total decomposition rate of chemicals (mol/(m3 s))

ri,f

Total formation rate of chemicals (mol/(m3 s))

t

Time (s)

tTmax

Holding time of temperature at T max [s]

vT

Heating rate (K/s)

x

Decomposition ratio of unit cellulose particle (−)

Greek letters

ρ

Molar density of the cellulose particle (mol/m3)

Subscripts

1∽4

Reaction described in Eqs. 47

Cel

Cellulose molecule

Mono

Monosaccharides

Oligo

Oligosaccharides

Pyro

Pyrolysis products

d

Decomposition

f

Formation

Notes

Acknowledegement

This study was supported in part by a Grant-Aid from The Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. 1.
    Modell M, Reid RC, Amin S (1978) U.S. Patent 4,113,446. Sept. 12Google Scholar
  2. 2.
    Sealock LJ Jr, Elliott DC, Baker EG, Butner RS (1993) Ind Eng Chem Res 32:1535CrossRefGoogle Scholar
  3. 3.
    Mok WSL, Antal MJ Jr (1992) Ind Eng Chem Res 31:1157CrossRefGoogle Scholar
  4. 4.
    Yu D, Aihara M, Antal MJ Jr (1993) Energy Fuels 7:574CrossRefGoogle Scholar
  5. 5.
    Xu X, Matsumura Y, Stenberg J, Antal MJ Jr (1996) Ind Eng Chem Res 35:2522CrossRefGoogle Scholar
  6. 6.
    Antal MJ Jr, Várhegyi G, Jakab E (1998) Ind Eng Chem Res 37:1267CrossRefGoogle Scholar
  7. 7.
    Antal MJ Jr, Allen SG, Schulman D, Xu X (2000) Ind Eng Chem Res 39:4040CrossRefGoogle Scholar
  8. 8.
    Minowa T, Ogi T, Yokoyama S (1995) Chem Lett 24:285CrossRefGoogle Scholar
  9. 9.
    Minowa T, Ogi T, Yokoyama S (1995) Chem Lett 24:937CrossRefGoogle Scholar
  10. 10.
    Minowa T, Zhen F, Ogi T, Várhegyi G (1997) J Chem Eng Jpn 30:186CrossRefGoogle Scholar
  11. 11.
    Minowa T, Zhen F, Ogi T, Várhegyi G (1998) J Chem Eng Jpn 31:131CrossRefGoogle Scholar
  12. 12.
    Minowa T, Zhen F (1998) J Chem Eng Jpn 31:488CrossRefGoogle Scholar
  13. 13.
    Szabó P, Minowa T, Ogi T (1998) J Chem Eng Jpn 31:571CrossRefGoogle Scholar
  14. 14.
    Inoue S, Hanaoka T, Minowa T (2002) J Chem Eng Jpn 35:1020CrossRefGoogle Scholar
  15. 15.
    Adschiri T, Hirose S, Malaluan R, Arai K (1993) J Chem Eng Jpn 26:676CrossRefGoogle Scholar
  16. 16.
    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K (1998) J Supercrit Fluids 13:261CrossRefGoogle Scholar
  17. 17.
    Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Ind Eng Chem Res 39:2883CrossRefGoogle Scholar
  18. 18.
    Watanabe M, Inomata H, Arai K (2002) Biomass Bioenerg 22:405CrossRefGoogle Scholar
  19. 19.
    Osada M, Sato T, Watanabe M, Adschiri T, Arai K (2004) Energy Fuels 18:327CrossRefGoogle Scholar
  20. 20.
    Sasaki M, Adschiri T, Arai K (2004) AIChE J 50:192CrossRefGoogle Scholar
  21. 21.
    Watanabe M, Inomata H, Osada M, Sato T, Adschiri T, Arai K (2003) Fuel 82:545CrossRefGoogle Scholar
  22. 22.
    Saisu M, Sato T, Watanabe M, Adschiri T, Arai K (2003) Energy Fuels 17:922CrossRefGoogle Scholar
  23. 23.
    Elliott DC, Sealock LJ Jr, Baker EG (1994) Ind Eng Chem Res 33:558CrossRefGoogle Scholar
  24. 24.
    Elliott DC, Phelps MR, Sealock LJ Jr, Baker EG (1994) Ind Eng Chem Res 33:566CrossRefGoogle Scholar
  25. 25.
    Sasaki M, Furukawa M, Minami K, Adschiri T, Arai K (2002) Ind Eng Chem Res 41:6642CrossRefGoogle Scholar
  26. 26.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1997) Ind Eng Chem Res 36:1552CrossRefGoogle Scholar
  27. 27.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1997) Ind Eng Chem Res 36:2025CrossRefGoogle Scholar
  28. 28.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K, Ohzeki H (1997) Ind Eng Chem Res 36:5063CrossRefGoogle Scholar
  29. 29.
    Kabyemela BM, Takigawa M, Adschiri T, Malaluan RM, Arai K (1998) Ind Eng Chem Res 37:357CrossRefGoogle Scholar
  30. 30.
    Yoshida K, Wakai C, Matubayasi N, Nakahara M (2005) J Chem Phys 123:164506/1CrossRefGoogle Scholar
  31. 31.
    Sasaki M (2000) Ph.D. thesis, Tohoku University, Sendai, JapanGoogle Scholar
  32. 32.
    Amin S, Reid RC, Modell M (1975) In: Proceedings of the intersociety conference on environmental systems, San Francisco, CA. The American Society of Mechanical Engineers (ASME), New York, ASME paper No. 75-ENAs-21Google Scholar
  33. 33.
    Bobleter O, Pape G (1968) Monatsh Chem 99:1560CrossRefGoogle Scholar
  34. 34.
    Matsumura Y, Yanachi S, Yoshida T (2006) Ind Eng Chem Res 45:1875CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Eiji Kamio
    • 1
  • Hisayoshi Sato
    • 1
  • Susumu Takahashi
    • 1
  • Hidehiko Noda
    • 2
  • Chouji Fukuhara
    • 1
  • Takanari Okamura
    • 1
  1. 1.Department of Chemical Engineering on Biological EnvironmentHachinohe Institute of TechnologyHachinoheJapan
  2. 2.Department of Mechanical EngineeringHachinohe Institute of TechnologyHachinoheJapan

Personalised recommendations