Advertisement

Journal of Materials Science

, Volume 43, Issue 1, pp 23–32 | Cite as

Brazing of yttria-stabilized zirconia (YSZ) to stainless steel using Cu, Ag, and Ti-based brazes

  • Mrityunjay Singh
  • Tarah P. Shpargel
  • Rajiv Asthana
Joining Science & Technology

Abstract

Copper and silver-base active metal brazes containing Ti (Cu-ABA, Ticusil, and Ticuni) were tested for oxidation resistance to 750–850 °C, and for their effectiveness in joining yttria-stabilized-zirconia (YSZ) to a corrosion-resistant ferritic stainless steel. The braze oxidation behavior was characterized using thermogravimetric analysis (TGA), optical and scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). Ticusil and Ticuni at 750 °C exhibited sluggish oxidation kinetics whereas Copper-ABA at 850 °C displayed the fastest kinetics and relatively large weight gain. The SEM and EDS examination of the steel/braze and YSZ/braze interfaces showed the dissolution of Y and Zr from YSZ in braze, diffusion of Ag in the YSZ, and formation of a thin Ti-rich interphase between YSZ and Ti-base brazes. These compositional changes and interface reconstruction yielded metallurgically sound joints. The Knoop microhardness profiles showed a rather abrupt discontinuity across the YSZ/braze interfaces and a more uniform distribution across the steel/braze interface.

Keywords

Energy Dispersive Spectrometry Solid Oxide Fuel Cell Reaction Layer Thermo Gravimetric Analyzer Braze Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Mr. John Setlock and Mark Jaster for their help at various stages of this work and Mr. Michael Halbig for critical review of the manuscript. R. Asthana acknowledges the research support received from the NASA Glenn Research Center.

References

  1. 1.
    Materials joining technology critical to future fuel cell manufacturing, EWI Insights (http://www.ewi.org), pp 4–5
  2. 2.
    Weil KS, Hardy JS Brazing a mixed ionic/electronic conductor to an oxidation-resistant metal. Adv Join Ceram, pp 185–198Google Scholar
  3. 3.
    Paiva OC, Ferreira L, Barbosa MA (1998) In: Bellosi A et al (eds) Interfacial science in ceramic joining. Kluwer Academic Publications, pp 329–340Google Scholar
  4. 4.
    Peteves SD, Ceccone G, Paulasto M, Stamos V, Yvon P (1996) JOM 48(1):48Google Scholar
  5. 5.
    Nichols MG, Peteves SD (1994) Reactive joining. Chemical effects on the formation and properties of brazed and diffusion-bonded interfaces. Scripta Mater 31(8):1091–1096CrossRefGoogle Scholar
  6. 6.
    Nicholas MG (1988) In: Materials science forum, vol. 29. Trans Tech, Switzerland, pp 127–150Google Scholar
  7. 7.
    Hanson WB, Ironside KI, Fernie JA (2000) Acta Mater 48(18–19):4673CrossRefGoogle Scholar
  8. 8.
    Hey AW (1990) In: Nicholas MG (eds) Joining of ceramics. Chapman & Hall, New York, p 66Google Scholar
  9. 9.
    Morizono Y, Nishida M, Chiba A, Nakata T (2004) J Ceramic Soc Japan 112(6):305CrossRefGoogle Scholar
  10. 10.
    Loehman RE (1989) Ceramic Bull 68(4):891Google Scholar
  11. 11.
    Eustathopoulos N, Nicholas MG, Drevet B (1999) Wettability at high temperatures. Pergamon, p 348Google Scholar
  12. 12.
    Westbrook JH (ed) (1992) Moffatt’s handbook of phase diagrams, vol. 2. Genium Publishing CoGoogle Scholar
  13. 13.
    Paulasto M, Ceccone G, Peteves SD (1997) In: Eustathopoulos N, Sobczak N (eds) High-temperature capillarity. Kracow, PolandGoogle Scholar
  14. 14.
    Metals Handbook, vol. 6, Welding, brazing and soldering. ASM International, Materials Park, OH, pp 117–118Google Scholar
  15. 15.
    Keene BJ (1993) Int Mater Revs 38(4):157Google Scholar
  16. 16.
    Nikolopoulos P, Sotiropoulou S (1987) J Mater Sci Lett 6:1429CrossRefGoogle Scholar
  17. 17.
    Grigorenko NF, Stegny AI, Kasich-Pilipenko IE, Naidich YV, Pasichny VV (1994) In: Eustathopoulos N (ed) High-temperature capillarity. Slovak Acad Sci, Bratislava, p 123Google Scholar
  18. 18.
    Sotiropoulou D, Nikolopoulos P (1993) J Mater Sci 28:356CrossRefGoogle Scholar
  19. 19.
    Humenik M Jr, Kingery WD (1954) J Am Ceramic Soc 37(1):18CrossRefGoogle Scholar
  20. 20.
    Tsoga A, Naoumidis A, Nikolopoulos P (1996) Acta Mater 44(9):3679CrossRefGoogle Scholar
  21. 21.
    Perevertailo VM, Loginova OB, Bagno NG (2001) In: Trans. Joining & Welding Res. Institute, JWRI, Osaka University, Japan, 30, pp 143–147Google Scholar
  22. 22.
    Kanetkar CS, Kacar AS, Stefanescu DM (1988) Metall Mater Trans 19A:1833Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mrityunjay Singh
    • 1
  • Tarah P. Shpargel
    • 2
  • Rajiv Asthana
    • 3
  1. 1.Ohio Aerospace InstituteNASA Glenn Research CenterClevelandUSA
  2. 2.ASRC Aerospace Corp.NASA Glenn Research CenterClevelandUSA
  3. 3.Engineering and Technology DepartmentUniversity of Wisconsin-StoutMenomonieUSA

Personalised recommendations