Journal of Materials Science

, Volume 43, Issue 2, pp 464–468 | Cite as

Luminescence of SrAl2O4:Cr3+

  • Ada López
  • Mariana G. da Silva
  • Elisa Baggio-Saitovitch
  • Alexandre R. Camara
  • Raimundo N. SilveiraJr.
  • Raul José Mauricio da Fonseca


Samples of SrAl2O4 and SrAl2O4:Cr3+ were prepared by mixing the powder materials SrCO3, Al2O3, and Cr2O3. The crystal structures of the undoped and doped samples were analyzed by X-ray diffraction (XRD) measurements. The diffraction patterns reveal a dominant phase, characteristic of the monoclinic SrAl2O4 compound and another unknown secondary phase, in small amount, for doped samples. The data were fitted using the Rietveld method for structural refinements and lattice parameter constants (a, b, c, and β) were determined. Luminescence of Cr3+ ions in this host is investigated for the first time by excitation and emission spectroscopy at room temperature. Emission spectra present a larger band and a smaller structure associated to the \( ^{{\text{4}}} T_{{\text{2}}} {\text{ (}}^{{\text{4}}} F{\text{)}} \to ^{{\text{4}}} A_{{\text{2}}} {\text{ (}}^{{\text{4}}} F{\text{)}} \) and \( ^{{\text{2}}} E{\text{ (}}^{{\text{2}}} G{\text{)}} \to ^{{\text{4}}} A_{{\text{2}}} {\text{ (}}^{{\text{4}}} F{\text{)}} \) electronic transitions, respectively. The obtained results are analyzed by crystal-field theory and the crystal-field parameter, Dq, and Racah parameters, B and C, are determined from the excitation measurements.


Octahedral Coordination Excitation Band SrAl2O4 Racah Parameter Persistent Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work described here was financially supported by the research national agencies FINEP and CNPq and by FAPERJ, the Rio de Janeiro State research agency.


  1. 1.
    Shen YR, Grinberg M, Barzowska J, Bray KL, Hanuza J, Deren PJ (2006) J Luminesc 116:1CrossRefGoogle Scholar
  2. 2.
    Sosman LP, da Fonseca RJM, Dias Tavares Jr A, Abritta T (2006) Ceramica 52:205Google Scholar
  3. 3.
    Sosman LP, da Fonseca RJM, Dias Tavares Jr A, Nakaema MKK, Bordallo HN (2006) J Fluoresc 16:317CrossRefGoogle Scholar
  4. 4.
    Liu Y, Xu C-N (2003) J Phys Chem B 107:3991CrossRefGoogle Scholar
  5. 5.
    Katsumata T, Nabae T, Sasajima K, Matsuzawa T (1998) J Cryst Growth 183:361CrossRefGoogle Scholar
  6. 6.
    Jestin Lenus A, Govinda Rajan K, Yousuf M, Sornadurai D, Purniah B (2002) Mater Lett 54:70CrossRefGoogle Scholar
  7. 7.
    Tang T-P, Lee C-M, Yen F-C (2006) Ceram Int 32:665CrossRefGoogle Scholar
  8. 8.
    Clabau F, Rocquefelt X, Le Mercier T, Deniard P, Jobic S, Whangbo M-H (2006) Chem Mater 18:3212CrossRefGoogle Scholar
  9. 9.
    Xu C-N, Yamada H, Wang X, Zheng X-G (2004) Appl Phys Lett 84:3040CrossRefGoogle Scholar
  10. 10.
    Pellé F, Aitasalo T, Lastusaari M, Niittykoski J, Hölsä J (2006) J Luminesc 119–120:64CrossRefGoogle Scholar
  11. 11.
    Zhong R, Zhang J, Zhang X, Lu S, Wang X-J (2006) J Luminesc 119–120:327CrossRefGoogle Scholar
  12. 12.
    Yang P, Lü MK, Song CF, Liu SW, Xu D, Yuan DR, Cheng XF (2003) Opt Mater 24:575CrossRefGoogle Scholar
  13. 13.
    Sosman LP, da Fonseca RJM, Dias Tavares Jr A, Barthem RB, Abritta T (2007) J Phys Chem Solids 68:22CrossRefGoogle Scholar
  14. 14.
    Bordallo HN, Henning RW, Sosman LP, da Fonseca RJM, Dias Tavares Jr A, Hanif KM, Strouse GF (2001) J Chem Phys 115:4300CrossRefGoogle Scholar
  15. 15.
    Bordallo HN, Wang X, Hanif KM, Strouse GF, da Fonseca RJM, Sosman LP, Dias Tavares Jr A (2002) J Phys: Condens Matter 14:12383CrossRefGoogle Scholar
  16. 16.
    da Fonseca RJM, Dias Tavares Jr A, Silva PS, Abritta T, Khaidukov NM (1999) Solid State Commun 110:519CrossRefGoogle Scholar
  17. 17.
    Demtröder W (1982) Laser spectroscopy, Springer-Verlag, pp 557–560Google Scholar
  18. 18.
    Fukuda K, Fukushima K (2005) J Solid State Chem 178:2709CrossRefGoogle Scholar
  19. 19.
    Poort SHM, Blokpoel WP, Blasse G (1995) Chem Mater 7:1547CrossRefGoogle Scholar
  20. 20.
    Happek U, Salley GM (2007) J Luminesc 125:104CrossRefGoogle Scholar
  21. 21.
    Qiao B, Tang ZL, Zhang ZT, Chen L (2007) Mater Lett 61:401CrossRefGoogle Scholar
  22. 22.
    Su F, Deng Z (2006) J Fluoresc 16:43CrossRefGoogle Scholar
  23. 23.
    Gao M, Kapphan S, Pankrath R (2000) J Phys Chem Solids 61:1959CrossRefGoogle Scholar
  24. 24.
    Tanner PA (2004) Chem Phys Lett 388:488CrossRefGoogle Scholar
  25. 25.
    Ryba-Romanowski W, Golab S, Pisarski WA, Dominiak-Dzik G, Palatnikov MN, Sidonov NV, Kallinikov VT (1997) Appl Phys Lett 70:2505CrossRefGoogle Scholar
  26. 26.
    Xia H, Wang J, Wang H, Zhang J, Zhang Y, Xu T (2006) Rare Earths 25:51Google Scholar
  27. 27.
    Glynn TJ, Imbusch GF, Walker G (1991) J Luminesc 48–49:541CrossRefGoogle Scholar
  28. 28.
    Kück S (2001) Appl Phys B 72:515Google Scholar
  29. 29.
    Marfunin AS (1979) Physics of minerals and inorganic materials: an introduction, Springer-Verlag, pp 209–213Google Scholar
  30. 30.
    Blasse G (1988) Prog Solid State Chem 18:79CrossRefGoogle Scholar
  31. 31.
    Grinberg M (1993) J Luminesc 54:396CrossRefGoogle Scholar
  32. 32.
    Tanabe Y, Sugano S (1954) J Phys Soc Japan 9:753CrossRefGoogle Scholar
  33. 33.
    Fano U (1961) Phys Rev 124:1866CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ada López
    • 1
    • 2
  • Mariana G. da Silva
    • 1
    • 2
  • Elisa Baggio-Saitovitch
    • 1
  • Alexandre R. Camara
    • 2
  • Raimundo N. SilveiraJr.
    • 2
  • Raul José Mauricio da Fonseca
    • 2
  1. 1.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  2. 2.DEQ, Instituto de FísicaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations