Journal of Materials Science

, Volume 42, Issue 22, pp 9429–9433 | Cite as

Critical slowing down in lead magnesium niobate–zirconate ceramic



Dielectric relaxation behaviour of (1 − x)PMN − xPZ, for x = 0.10, 0.30 and 0.40 have been studied. The nature of relaxational behaviour was found to change with PZ concentration. A crossover from a static freezing to critical slowing down like behaviour is observed with increase in Zr4+ concentration. We have used Glazounov and Tangastev criterion to distinguish freezing and critical slowing down like behaviour.


Dielectric Response Dielectric Data Lead Titanate Charge Imbalance Polar Cluster 


  1. 1.
    Matirena HT, Burfoot JC (1974) Ferroelectrics 7:151Google Scholar
  2. 2.
    Noblanc O, Gaucher P, Calvarin G (1996) J Appl Phys 79:4291CrossRefGoogle Scholar
  3. 3.
    Kuwata J, Uchino K, Nomura S (1982) Jpn J Appl Phys 21:1298CrossRefGoogle Scholar
  4. 4.
    Hilton AD, Randall CA, Barber DJ, Shrout TR (1989) Ferroelectrics 93:79Google Scholar
  5. 5.
    Viehland D, Kim MC, Li JF, Xu X (1995) Appl Phys Lett 67:2471CrossRefGoogle Scholar
  6. 6.
    Singh G, Tiwari VS, Wadhawan VK (2001) Solid State Commun 118:407CrossRefGoogle Scholar
  7. 7.
    Gurvinderjit Singh, Tiwari VS, Kumar A, Wadhawan VK (2003) J Mater Res 18:531CrossRefGoogle Scholar
  8. 8.
    Gurvinderjit Singh, Tiwari VS (2007) J Appl Phys 101:014115CrossRefGoogle Scholar
  9. 9.
    Smolenski GA (1970) J Phys Soc Jpn 28:26Google Scholar
  10. 10.
    Cross LE (1987) Ferroelectrics 76:241Google Scholar
  11. 11.
    Viehland D, Jang SJ, Cross LE, Wuttig M (1990) J Appl Phys 68:916CrossRefGoogle Scholar
  12. 12.
    Westphal V, Kleeman W, Glinchuk MD (1992) Phys Rew Lett 68:847CrossRefGoogle Scholar
  13. 13.
    Wadhawan VK (2000) Introduction to ferroic materials. Gordon & Breach Science Publishers, AmsterdamGoogle Scholar
  14. 14.
    Randall CA, Bhalla AS (1992) Jpn J Appl Phys 29:327CrossRefGoogle Scholar
  15. 15.
    Glazounov AE, Tangestev AK (1998) Appl Phys Lett 73:856CrossRefGoogle Scholar
  16. 16.
    Tangstev AK (1994) Phys Rev Lett 72:1100CrossRefGoogle Scholar
  17. 17.
    Swartz SL, Shrout TR (1982) Mater Res Bull 17:1245CrossRefGoogle Scholar
  18. 18.
    Trybula Z, Schmidt VH, Drumheller JE (1991) Phys Rev B 43:1287CrossRefGoogle Scholar
  19. 19.
    Eom J, Yoon JG, Kwum S (1991) Phys Rev B 44:2826CrossRefGoogle Scholar
  20. 20.
    Noh KH, Kwun S (2000) Phys Rev B 62:223CrossRefGoogle Scholar
  21. 21.
    Berret JF, Boston C, Hennion B (1992) Phys Rev B 46:13747CrossRefGoogle Scholar
  22. 22.
    Toulouse J, Vugmeister BE, Pattnaik R (1994) Phys Rev Lett 73:3467CrossRefGoogle Scholar
  23. 23.
    Hochli UT (1982) Phys Rev Lett 48:1494CrossRefGoogle Scholar
  24. 24.
    Colla EV, Furman EL, Gupta SM, Yushin NK (1999) J Appl Phys 85:1693CrossRefGoogle Scholar
  25. 25.
    Xu G, Zhong Z, Bing Y, Ye Z-G, Stock C, Shirane G (2003) Phys Rev B 67:104102CrossRefGoogle Scholar
  26. 26.
    Cheng Z-Y, Zang L-Y, Yao X (1996) J Appl Phys 79:8615CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Ceramic Laboratory, Laser Materials Development and Devices DivisionRaja Ramanna Centre for Advanced TechnologyIndoreIndia

Personalised recommendations