Journal of Materials Science

, Volume 43, Issue 2, pp 525–529 | Cite as

Optical and structural properties of PbI2 thin films

  • J. F. Condeles
  • R. A. Ando
  • M. Mulato


Lead iodide thin films were fabricated using the spray pyrolysis technique. Milli-Q water and N.N-dimethylformamide were used as solvents under varying deposition conditions. Films as thick as 60 μm were obtained. The optical and structural properties of the samples were investigated using Photoluminescence, Raman scattering, X-ray diffraction, and Scanning electron microscopy. In addition, the study included also the electronic properties which were investigated by measuring the dark conductivity as a function of temperature. The deposition technique seems to be promising for the development of thick films to be used in medical imaging.


Spray Pyrolysis PbI2 High Deposition Temperature Polycrystalline Thin Film Lead Iodide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by CNPq (479316/2006-6), Capes and Fapesp (01/08221-9). We thank C. F. O. Graeff, C. A. Brunello, F. likawa and L. A. Montoro for experimental help.


  1. 1.
    Shah KS, Street RA, Dmitriyev Y, Bennett P, Cirignano L, Klugerman M, Squillante MR, Entine G (2001) Nucl Instrum Methods Phys Res A 458:140CrossRefGoogle Scholar
  2. 2.
    Lund JC, Shah KS, Squillante MR, Moy LP, Sinclair F, Entine G (1989) Nucl Instrum Methods Phys Res A 283:299CrossRefGoogle Scholar
  3. 3.
    Oliveira IB, Costa FE, Armelin MJ, Cardoso LP, Hamada MM (2002) IEEE Trans Nucl Sci 49(4):1968CrossRefGoogle Scholar
  4. 4.
    Perednis D, Gauckler LJ (2005) J Electroceramics 14:103CrossRefGoogle Scholar
  5. 5.
    Sahay PP, Tewari S, Jha S, Shamsuddin M (2005) J Mater Sci 40(18):4791CrossRefGoogle Scholar
  6. 6.
    Condeles JF, Martins TM, Dos Santos TC, Brunello CA, Rosolen JM, Mulato M (2004) J Non-Crystal Solids 338–340:81CrossRefGoogle Scholar
  7. 7.
    Condeles JF, Lofrano RCZ, Rosolen JM, Mulato M (2006) Braz J Phys 36(2A):320CrossRefGoogle Scholar
  8. 8.
    Unagami T (1999) J Electrochem Soc 146(8):3110CrossRefGoogle Scholar
  9. 9.
    Cullity BD (1978) In: Elements of X-ray diffraction, 2nd edn, Addison-Wesley, p 281Google Scholar
  10. 10.
    Dag I, Lifshitz E (1996) J Phys Chem 100:8962CrossRefGoogle Scholar
  11. 11.
    Levy F, Mercier A, Voitchovsky JP (1974) Solid States Commun 15:819CrossRefGoogle Scholar
  12. 12.
    Klintenberg MK, Weber MJ, Derenzo DE (2003) J Luminesc 102–103:287CrossRefGoogle Scholar
  13. 13.
    Baibarac M, Preda N, Mihut L, Baltog I, Lefrant S, Mevellec JY (2004) J Phys Condens Matter 16:2345CrossRefGoogle Scholar
  14. 14.
    Nakashima S (1975) Solid State Commun 16:1059CrossRefGoogle Scholar
  15. 15.
    Davydova NA, Baran J, Marchewka MK, Ratajczak H (1997) J Mol Struct 404:163CrossRefGoogle Scholar
  16. 16.
    Ponpon JP, Amann M (2001) Thin Solid Films 394:277CrossRefGoogle Scholar
  17. 17.
    Bennett PR, Shah KS, Dmitriev Y, klugerman M, Gupta T, Squillante M, Street R, Partain L, Zentai G, Pavyluchova R (2003) Nucl Instrum Methods Phys Res A 505:269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Departamento de Física e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirao PretoBrazil
  2. 2.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSao PauloBrazil

Personalised recommendations