Advertisement

Journal of Materials Science

, Volume 42, Issue 21, pp 8838–8843 | Cite as

Stretching a stiff polymer in a tube

  • Jizeng Wang
  • Huajian Gao
Nano- and micromechanical properties of hierarchical biological materials

Abstract

The present paper investigates the force-extension behavior of a stiff polymer under stretching inside a small tube. We develop a theory and perform Brownian dynamic simulations based on a recently developed generalized bead-rod model (GBR) to show that the force-extension relation of such a strongly confined polymer chain can be described by that of an unconfined polymer subject to an effective force which is derived based on Odijk’s theory of a confined polymer chain.

Keywords

Persistence Length Contour Length Effective Force Brownian Dynamic Simulation Wormlike Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, NYGoogle Scholar
  2. 2.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Odijk T (1986) Macromolecules 19:2313CrossRefGoogle Scholar
  4. 4.
    Shiessel H (2003) J Phys Condens Matter 15:R699CrossRefGoogle Scholar
  5. 5.
    Earshaw WC, Harrison SC (1977) Nature 268:598CrossRefGoogle Scholar
  6. 6.
    Purohit PK, Kondev J, Philips R (2003) Proc Natl Acad Sci USA 100:3173CrossRefGoogle Scholar
  7. 7.
    De Gennes PG (1976) Macromolecules 9:587CrossRefGoogle Scholar
  8. 8.
    De Gennes PG (1976) Macromolecules 9:594CrossRefGoogle Scholar
  9. 9.
    De Gennes PG (1971) J Chem Phys 55:572CrossRefGoogle Scholar
  10. 10.
    Odijk T (1983) Macromolecules 16:1340CrossRefGoogle Scholar
  11. 11.
    Odijk T (1993) Macromolecules 26:6897CrossRefGoogle Scholar
  12. 12.
    Khokhlov AR, Semenov AN (1981) Physica A 108:546CrossRefGoogle Scholar
  13. 13.
    Khokhlov AR, Semenov AN (1982) Physica A 112:605CrossRefGoogle Scholar
  14. 14.
    Helfrich W, Harbich W (1985) Chem Scr 25:32Google Scholar
  15. 15.
    Helfrich W (1978) Z Naturforsch A 33:305Google Scholar
  16. 16.
    Helfrich W, Servuss RM (1984) Nuovo Cimento D 3:137CrossRefGoogle Scholar
  17. 17.
    Dijkstra M, Frenkel D, Lekkerkerker HNW (1993) Physica A 193:374CrossRefGoogle Scholar
  18. 18.
    Bicout DJ, Burkhard TW (2001) J Phys A: Math Gen 34:5745CrossRefGoogle Scholar
  19. 19.
    Wang J, Gao H (2005) J Chem Phys 123:084906CrossRefGoogle Scholar
  20. 20.
    Smith S, Finzi L, Bustamante D (1992) Science 258:1122CrossRefGoogle Scholar
  21. 21.
    Bustamante C, Marko JF, Siggia ED, Smith S (1994) Science 265:1599CrossRefGoogle Scholar
  22. 22.
    Strick T, Allemand J, Bensimon D, Bensimon A, Croquette V (1996) Science 271:1835CrossRefGoogle Scholar
  23. 23.
    Marko JF, Siggia ED (1995) Macromolecules 28:8759CrossRefGoogle Scholar
  24. 24.
    Kierfeld J, Niampoly O, Sa-Yakanit V, Lipowsky R (2004) Eur Phys J E 14:17CrossRefGoogle Scholar
  25. 25.
    Wang J, Fan X, Gao H (2006) Mol Cell Biomech 3(1):13Google Scholar
  26. 26.
    Burkhardt TW (1995) J Phys A: Math Gen 28:L629CrossRefGoogle Scholar
  27. 27.
    Burkhardt TW (1997) J Phys A: Math Gen 30:L167CrossRefGoogle Scholar
  28. 28.
    Jo K, Dhinhra DM, Odijk T, De Pablo JJ, Graham MD, Runnheim R, Forrest D, Schwartz DC (2007) Proc Natl Acad Sci USA 104:2673CrossRefGoogle Scholar
  29. 29.
    Landau LD, Lifshitz EM (1958) Statistical physics. Addison-Wesley, Reading, MAGoogle Scholar
  30. 30.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463CrossRefGoogle Scholar
  31. 31.
    Peters EAJF, Barenbrug TMAOM (2002) Phys Rev E 66:056701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations