Journal of Materials Science

, Volume 42, Issue 21, pp 8864–8872 | Cite as

Tubulin: from atomistic structure to supramolecular mechanical properties

  • Marco A. Deriu
  • Søren Enemark
  • Monica Soncini
  • Franco M. Montevecchi
  • Alberto Redaelli
Nano- and micromechanical properties of hierarchical biological materials


Microtubules (MTs) are fundamental structural elements in the cytoskeleton of eukaryotic cells. Their unique mechanical properties depend on the properties of the tubulin dimer, its interactions with surrounding dimers and the geometric organization within the MT. While the geometry has already been well described in experimental works, the mechanical characteristics of the dimer as well as of the individual monomers have up to date not been described. These may therefore provide new, additional insight to the microtubule tensile properties. In this paper we construct a mesoscale model of MT with a bottom-up approach. First, we evaluate the elastic constants of each of the two monomers together with the interaction force between them by means of molecular dynamics (MD) simulations carried out in an explicit water environment. Using the MD results, we model a 1 μm long MT as a cylinder constituted by interacting elastic elements and examine its properties via finite element method (FEM). The obtained results show an elastic constant value for α-tubulin of 11 N/m, while for the β-tubulin the elastic constant was measured to be 15.6 N/m. Concerning interactions between neighbouring monomers, the elastic constants along the protofilament (45 N/m for the intra-dimer interface and 18 N/m for the inter-dimer interface) are more rigid than elastic constants calculated for lateral interfaces (11 and 15 N/m). The mesoscale model provides mechanical properties of the whole MT, thus allowing the comparison with data obtained by other previous experimental and theoretical studies. We report here a Young modulus of 1.66 GPa for the MT under axial tension. In perspective our approach provides a simple tool for the analysis of MT mechanical behaviour under different conditions.


Molecular Dynamic Simulation Elastic Constant Young Modulus Mesoscale Model Lateral Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been supported by the EST Marie Curie programme contract number MEST-CT-2004-504465 and by the Active Biomics STREP project contract number NMP4-CT-2004-516989.


  1. 1.
    Howard J (2001) In: Mechanics of motor proteins and the cytoskeleton. Sinauer, Sunderland, pp 119–134Google Scholar
  2. 2.
    Nogales E, Wolf SG, Downing KH (1998) Nature 391:199CrossRefGoogle Scholar
  3. 3.
    Chrétien D, Wade RH (1991) Biol Cell 71:161CrossRefGoogle Scholar
  4. 4.
    Felgner H, Frank R, Schliwa M (1996) J Cell Sci 109:509Google Scholar
  5. 5.
    Kurachi M, Hoshi M, Tashiro H (1997) Cell Mot Cyt 38:201CrossRefGoogle Scholar
  6. 6.
    Venier P, Maggs AC, Pantaloni D (1994) J Biol Chem 269:13353Google Scholar
  7. 7.
    Kis A, Kasas S, Babi B, Kulik AJ, Benoît W, Briggs GAD, Schönenberger C, Catsicas S, Forró L (2002) Phys Rev Lett 89:248101CrossRefGoogle Scholar
  8. 8.
    Gittes F, Mickey B, Nettleton J, Howard J (1993) J Cell Biol 120:923CrossRefGoogle Scholar
  9. 9.
    Kasas S, Kis A, Riederer BM, Forró L, Dietler G, Catsicas S (2004) Chem Phys Chem 5:252Google Scholar
  10. 10.
    Jánosi IM, Chrétien D, Flyvbjerg H (2002) Biophys J 83:1317CrossRefGoogle Scholar
  11. 11.
    VanBuren V, Cassimeris L, Odde DJ (2005) Biophys J 89:2911CrossRefGoogle Scholar
  12. 12.
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acid Res 28:235CrossRefGoogle Scholar
  13. 13.
    Löwe J, Li H, Downing KH, Nogales E (2001) J Mol Biol 313:1045CrossRefGoogle Scholar
  14. 14.
    Lindahl E, Hess B, van der Spoel D (2001) J Mol Mod 7:306Google Scholar
  15. 15.
    Berendsen HJC, Postma JPM, van Gunstersen WF, Hermans J (1981) In: Interaction model for water in relation to protein hydration. Reidel Publishing Company Dordrecht, Dordrecht, p 331Google Scholar
  16. 16.
    Berendsen HJC, Postma JPM, DiNola A, Haak JR (1984) J Chem Phys 81:3684CrossRefGoogle Scholar
  17. 17.
    Nogales E, Whittaker M, Miligan RA, Downing KH (1999) Cell 96:79CrossRefGoogle Scholar
  18. 18.
    Lenne PF, Raae AJ, Altmann SM, Saraste M, Hörber JKH (2000) FEBS Lett 476:124CrossRefGoogle Scholar
  19. 19.
    Altmann SM, Grünberg RG, Lenne PF, Ylänne J, Raae AJ, Herbert K, Saraste M, Nilges M, Hörber JKH (2002) Struct 10:1085CrossRefGoogle Scholar
  20. 20.
    Soncini M, Vesentini S, Ruffoni D, Orsi M, Deriu MA, Redaelli A (2006) Biomech Model Mechanobiol Nov 18;[Epub ahead of print]Google Scholar
  21. 21.
    Erickson HP, Stoffler D (1996) J Cell Biol 135:5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Marco A. Deriu
    • 1
  • Søren Enemark
    • 2
  • Monica Soncini
    • 2
  • Franco M. Montevecchi
    • 1
  • Alberto Redaelli
    • 2
  1. 1.Department of Mechanical EngineeringPolitecnico di TorinoTorinoItaly
  2. 2.Department of BioengineeringPolitecnico di MilanoMilanItaly

Personalised recommendations