Skip to main content
Log in

Influence of microstructure on corrosion behavior of Ti–5%Ta–1.8%Nb alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents the results of a study on the influence of microstructure on the corrosion behavior of a α–β Ti–5%Ta–1.8%Nb alloy—a candidate material for use in high concentrations of boiling nitric acid. The “as cast” alloy had a lamellar structure and showed a corrosion rate of about 1.5 mpy. Thermo-mechanical processing of the cast alloy resulted in a structure of predominantly of equiaxed α with random distribution of fine β particles. This “reference” structure was further modified employing different heat treatments similar to that for commercial titanium alloys such as mill annealing, solution treatment and aging or over aging treatments. Corrosion rates evaluated in boiling nitric acid in the liquid, vapor and condensate phases, showed low values ∼1 mpy. Of these, the lowest corrosion rate (∼0.03 mpy) was exhibited by the structure with minimum amount of β phase, distributed in an equiaxed α matrix. This structure was obtained by aging of the solution treated “reference” alloy. Hence, solution treatment high in the α + β phase field followed by aging at a temperature low in the α + β phase field has been identified as the optimum treatment to obtain a microstructure with superior corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kamachi Mudali U, Dayal RK, Gnanamoorthy JB (1993) J Nucl Mater 203:73

    Article  Google Scholar 

  2. Furuya T, Satoh H, Shimogori K, Nakamura Y, Matsumoto K, Komori Y, Takeda S (1984) In: Proceedings of ANS topical meeting, vol I, p 1.249

  3. Kiuchi K, Hayashi M, Hayakawa H, Sakairi M, Kikuchi M (1994) “Fundamental study of controlling factors on reliability of fuel reprocessing plant materials used in nitric acid solutions”, a poster paper in session: “Corrosion and materials selection”. In: Proceedings of the fourth international conference on nuclear fuel reprocessing and waste management, RECOD ’94, vol III, London, 24–28 April 1994

  4. Ronald WS (1995) In: Baboian R (ed) Corrosion tests and standards: application and interpretation. ASTM manual series: MNL 20. ASTM, Philadelphia, USA, p 493

  5. Steele DF (1986) Atom. March:5

  6. Furuya T, Kawafuku J, Satoh H, Shimogori K, Aoshima A, Takeda S (1991) ISIJ Int 31(2):189

    Article  CAS  Google Scholar 

  7. Kiuchi K, Hayakawa H, Takagi Y, Kikuchi M (1994) “New alloy development for fuel reprocessing plant materials used in nitric acid solutions”, a poster paper in session: “Corrosion and materials selection”. In: Proceedings of the fourth international conference on nuclear fuel reprocessing and waste management, RECOD ’94, vol III, London, 24–28 April 1994

  8. Kapoor K, Kain V, Gopal Krishna T, Sanyal T, De PK (2003) J Nucl Mater 322:36

    Article  CAS  Google Scholar 

  9. Mythili R, Thomas Paul V, Saroja S, Vijayalakshmi M, Raghunathan VS (2005) Mater Sci Eng A390:299

    Article  CAS  Google Scholar 

  10. Mythili R, Saroja S, Vijayalakshmi M, Raghunathan VS (2005) J Nucl Mater 345:167

    Article  CAS  Google Scholar 

  11. Ravishankar A, Mythili R, Raju VR, Saroja S, Dayal RK, Vijayalakshmi M, Raghunathan VS, Balasubramaniam R, Singhal LK (2003) In: Raj B, Bhanu Sankara Rao K, Shankar P, Murali N (eds) Proceedings of conference on materials and technologies for nuclear fuel cycle, Chennai, India, 15–16 December 2003, p C-7

  12. Ravi Shankar A (2004) Corrosion behaviour of Ti-5%Ta-1.8%Nb alloy in nitric acid medium for fast reactor fuel reprocessing applications. M. Tech. Thesis, Indian Institute of Technology, Kanpur, India

  13. Bernard C, Mouroux JP (1991) In: Proceedings of the third international conference on nuclear fuel reprocessing and waste management, RECOD ’91, vol II, Sendai, Japan, 14–18 April 1991, p 570

  14. Flower HM (1990) Mater Sci Tech 6:1082

    Article  CAS  Google Scholar 

  15. Gill FJ, Genebra MP, Manero JM, Planell JA (2001) J Alloys Compd 329:142

    Article  Google Scholar 

  16. Zhang XD, Bonniwell P, Fraser HL, Baeslack WA III, Evans DJ, Ginter T, Bayha T, Cornell B (2003) Mater Sci Eng A343:210

    Article  CAS  Google Scholar 

  17. Publication of Imperial Metal Industries (1969) Corrosion characteristics of titanium in “Corrosion resistance of titanium”, Witton, UK, p 39

  18. Brossia CS, Cragnolino GA (2001) Corrosion 57(9):768

    Article  CAS  Google Scholar 

  19. Dull L, Raymond L (1969) J Electrochem Soc 116:332

    Google Scholar 

  20. Lampman S (1987) In: Steven RL, Scott DH (eds) ASM Metals Hand book, vol 2, “Properties & Selection: Non-ferrous Alloys & Special Purpose Materials”, 10th edn. ASM International, Materials Park, OH, USA, p 592

  21. Robin A, Sandim HRZ, Rosa JL (1999) Corr Sci 41:1333

    Article  CAS  Google Scholar 

  22. Kenneth RT, Chamberlain J (1988) Corrosion for students of science and engineering. John Wiley and Sons Inc., USA, p 335

    Google Scholar 

  23. Metikos-Hukovic M, Kwokal A (2003) J Piljac, Biomater 24:3765

    Article  CAS  Google Scholar 

  24. Williams JC (1973) In: Jaffee RI, Burte HM (eds) Titanium science and technology, vol 3, Plenum Press, New York, p 1433

  25. Ronald WS, David ET (1987) In: Joseph RD, James DD (eds) ASM Metals Handbook, vol 13, “Corrosion”, 9th edn. ASM International, Materials Park, OH, USA, p 669

  26. Pergament AL, Stefanovich GB (1998) Thin Solid Films 322:33

    Article  CAS  Google Scholar 

  27. Te-Lin Y (1986) In: Young CS, Durham JC (eds) Industrial applications of titanium, zirconium: vol 4, ASTM STP 917. ASTM, Philadelphia, p 57

  28. Bomberger HB (1984) In: Webster RT, Young CS (eds) Industrial applications of titanium and zirconium: third conference, STP 830. ASTM, Philadelphia, p 143

  29. Khan MA, Williams RL, Williams DF (1996) Biomaterials 17(22):2117

    Article  CAS  Google Scholar 

  30. Yu SY, Scully JR (1997) Corrosion 53(12):965

    Article  CAS  Google Scholar 

  31. Thair L (2002) Studies on thermomechanically processed and nitrogen ion implanted Ti-6Al-7Nb biomedical alloy. PhD Thesis, Anna University, Chennai, India

  32. Marc Long HJ, Rack H (1998) Biomaterials 19:1621

    Article  Google Scholar 

  33. Sittig C, Textor M, Spencer ND, Wiland M, Vallotton PH (1999) J Mater Sci: Mater Med 10:35

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Dr Baldev Raj, Director, IGCAR, Kalpakkam for his encouragement and keen interest in their pursuit on studies in titanium alloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saroja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mythili, R., Ravi Shankar, A., Saroja, S. et al. Influence of microstructure on corrosion behavior of Ti–5%Ta–1.8%Nb alloy. J Mater Sci 42, 5924–5935 (2007). https://doi.org/10.1007/s10853-007-1773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1773-9

Keywords

Navigation