Journal of Materials Science

, Volume 43, Issue 2, pp 541–545 | Cite as

Synthesis and characterization of semiconductor polymers having different phenylene–vinylene conjugation lengths

  • Tunísia Eufrausino Schuler
  • Shu Hui Wang
  • Shirley Possidonio
  • Roberto Koji Onmori


We have synthesized phenylene–vinylene (PV) polymers containing segments with different conjugation lengths interspaced by random distributed aliphatic segments. Infrared (IR) and ultraviolet–visible (UV–vis) spectroscopies, hydrogen nuclear magnetic resonance (1H NMR) spectrometry and differential scanning calorimetry (DSC) were used to characterize the prepared copolymers’ structures. Polymers molecular weights were determined by gel permeation chromatography (GPC). The effect of polymer structure and composition on emission properties was studied by fluorescence (PL) spectroscopy under different irradiation wavelength. The emission energy shift due to segments with longer conjugation lengths was minor owed to the low polymerization degree achieved.


Conjugation Length Exciton Singlet Prepared Copolymer Hydrogen Nuclear Magnetic Resonance Conjugation Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank CNPq and FAPESP for financial support.


  1. 1.
    Furakawa M, Mizuno K, Matsui A, Rughooputh SDDV, Walker WC (1989) J Phys Soc Jpn 58(8):2976CrossRefGoogle Scholar
  2. 2.
    Wong KS, Bradley DDC, Hayes W, Ryan JF, Friend RH, Lindenberger H, Roth S (1987) J Phys C: Solid State Phys 20:L187CrossRefGoogle Scholar
  3. 3.
    Chang R, Hsu JH, Fann WS, Liang KK, Chang CH, Hayashi M, Yu J, Lin SH, Chang EC, Chuang KR, Chen SA (2000) Chem Phys Lett 317:142CrossRefGoogle Scholar
  4. 4.
    Marletta A (2001) In: Processos ópticos de semi-orgânicos à base polímeros emissores de luz. PhD thesis. Instituto de Física de São Carlos, Universidade de São Paulo, São PauloGoogle Scholar
  5. 5.
    Friend RH, Brandley DDC, Townsend TD (1987) Phys D: Appl Phys 20:1367CrossRefGoogle Scholar
  6. 6.
    Marletta A, Castro FA, Gonçalves D, Oliveira ON Jr, Faria RM, Guimaraes FEG (2001) Synthetic Metals 121:1447CrossRefGoogle Scholar
  7. 7.
    Friend RH, Denton GJ, Halls JJM, Harrison NT, Holmes AB, Kohler A, Lux A, Moratti SC, Pichler K, Tessler N, Towns K, Wittmann HF (1997) Sol State Comm 102:249CrossRefGoogle Scholar
  8. 8.
    Raucher U, Bassler H, Bradley DDC, Hennecke M (1990) Phys Rev B 42:9830CrossRefGoogle Scholar
  9. 9.
    Candeias LP, Grozema FC, Padmanaban G, Ramakrishnan S, Siebbeles LDA, Warman JM (2003) J Phys Chem B 107:1554CrossRefGoogle Scholar
  10. 10.
    Prins P, Grozema FC, Siebbeles LDA (2006) J Phys Chem B 110:14659CrossRefGoogle Scholar
  11. 11.
    Hay M, Klavetter FL (1995) J Am Chem Soc 117:7112CrossRefGoogle Scholar
  12. 12.
    Yang Z, Sokolik I, Karasz FE (1993) Macromolecules 26:1188CrossRefGoogle Scholar
  13. 13.
    Gan LH, Kang ET, Liau CY (2001) Polymer 42:1329CrossRefGoogle Scholar
  14. 14.
    Yang Z, Hu B, Karasz FE (1998) J Macromol Sci – Pure Appl Chem A35(2):233CrossRefGoogle Scholar
  15. 15.
    Kim KH, Baek NS, Paik KL et al (2002) Macromolecules 35(18):6782CrossRefGoogle Scholar
  16. 16.
    Yang Z, Karasz FE, Geise HJ (1993) Macromolecules 26:6570CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Tunísia Eufrausino Schuler
    • 1
  • Shu Hui Wang
    • 2
  • Shirley Possidonio
    • 2
  • Roberto Koji Onmori
    • 1
  1. 1.Department of Electronic Systems Engineering, Polytechnic SchoolUniversity of São PauloSao PauloBrazil
  2. 2.Department of Metallurgical and Materials Engineering, Polytechnic SchoolUniversity of São PauloSão PauloBrazil

Personalised recommendations