Skip to main content
Log in

Molecular dynamics simulations of atomic-level brittle fracture mechanisms in amorphous silica

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We have examined the atomic dynamics of the brittle fracture process in amorphous silica using molecular dynamics. Under strain, extensive atomic restructuring occur in the vicinity of voids leading to the formation of 2-membered (2-M) silica rings that are much different than the open network structure of the bulk. The sequence of events that lead to the formation of the 2-M rings was characterized by examining the change in local coordination of atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ravi-Chandar K (1998) Int J Fracture 90:83

    Article  CAS  Google Scholar 

  2. Griffith AA (1920) Phil Trans Roy Soc A221:163

    Google Scholar 

  3. Inglis CE (1913) Trans Int Naval Arch London V.LV:219

    Google Scholar 

  4. Lawn b In: Fracture of brittle solids, Cambridge Solid State Science Series, 2nd edn., p 33

  5. Irwin GR (1957) J Appl Mech 24:361

    Google Scholar 

  6. Orowan E (1942) Repts Prog Phys 12:185

    Article  Google Scholar 

  7. Barenblatt GI (1962) Adv Appl Mech 7:55

    Article  Google Scholar 

  8. Rountree CL, Kalia RK, Lidorikis E, Nakano A, Van Brutzel L, Vashishta P (2002) Annu Rev Mater Res 32:377

    Article  CAS  Google Scholar 

  9. Holland D, Marder M (1998) Phys Rev Lett 80:746

    Article  CAS  Google Scholar 

  10. Swadener JG, Baskes MI, Nastasi M (2002) Phys Rev Lett 89:855031

    Article  Google Scholar 

  11. Holian BL, Ravelo R (1995) Phys Rev B 51:11275

    Article  CAS  Google Scholar 

  12. Abraham FF, Brodbeck D, Rafey RA, Rudge WE (1994) Phys Rev Lett 73:272

    Article  CAS  Google Scholar 

  13. Abraham FF, Brodbeck D, Rudge WE, Xu X (1997) J Mech Phys Solids 45:1595

    Article  CAS  Google Scholar 

  14. Nakano A, Kalia RK, Vasishta P (1995) Phys Rev Lett 75:3138

    Article  CAS  Google Scholar 

  15. Kalia RK, Nakano A, Omeltchenko A, Tsuruta K, Vashishta P (1997) Phys Rev Lett 78:2144

    Article  CAS  Google Scholar 

  16. Van Brutzel l, Rountree CL, Kalia RK, Nakano A, Vashishta P (2002) In: Materials research society symposium proceedings April 2002, MRS, 2002, Vol. 703 p. 117

  17. Wiederhorn SM, Bolz LH (1970) J Amer Ceram Soc 53:543

    Article  CAS  Google Scholar 

  18. Hull D (1997) J Mater Sci 31:1829

    Article  Google Scholar 

  19. Dally JW (1979) Exptal Mech 19:749

    Google Scholar 

  20. Ma CC, Freund LB (1986) J Appl Mech 53:303

    Article  Google Scholar 

  21. Hauch JA, Holland D, Marder M, Swinney HL (1999) Phys Rev Lett 82:3823

    Article  CAS  Google Scholar 

  22. Gross SP, Fineberg J, Marder M, Mccormick WD, Swinney HL (1993) Phys Rev Lett 71:3162

    Article  CAS  Google Scholar 

  23. Kalthoff JF (1985) Int J Fracture 27:277

    Article  Google Scholar 

  24. Ravi-Chandar K, Knauss WG (1984) Int J Fracture 26:141

    Article  Google Scholar 

  25. Soules TF, Busbey RF (1981) J Chem Phys 75:969

    Article  CAS  Google Scholar 

  26. Ochoa R, Simmons JH (1985) J Non-Cryst Solids 75:413

    Article  CAS  Google Scholar 

  27. Ochoa R, Swiler TP, Simmons JH (1991) J Non-Cryst Solids 128:57

    Article  CAS  Google Scholar 

  28. Simmons JH, Swiler TP, Ochoa R (1991) J Non-Cryst Solids 134:179

    Article  CAS  Google Scholar 

  29. Swiler TP, Simmons JH, Wright AC (1995) J Non-Cryst Solids 182:68

    Article  CAS  Google Scholar 

  30. Guilloteau E, Charrue H, Creuzet F (1996) Europhys Lett 34:549

    Article  CAS  Google Scholar 

  31. Celarie F, Prades S, Bonamy D, Ferrero L, Bouchaud E, Guillot C, Marliere C (2003) Phys Rev Lett 90:75504

    Article  CAS  Google Scholar 

  32. Liebau F (1988) In: Devine RAB (ed) The physics and technology of amorphous SiO2. Plenum, New York, pp 15

  33. Haile JM (1992) In: Molecular dynamics simulation: elementary methods. Wiley Inter-Science

  34. West JK, Hench LL (1991) J Mater Sci 29:3601

    Article  Google Scholar 

  35. Lindsay CG, White GS, Freiman SW, Wong-Ng W (1994) J Am Ceram Soc 77:2179

    Article  CAS  Google Scholar 

  36. Wong-Ng W, White GS, Freiman SW (1992) J Am Ceram Soc 75:3097

    Article  CAS  Google Scholar 

  37. Del Bene JE, Runge K, Bartlett RJ (2003) Comp Mat Sci 27:102

    Article  Google Scholar 

  38. Kieffer J, Angell CA (1988) J Non-Cryst Solids 106:336

    Article  CAS  Google Scholar 

  39. Muralidharan Krishna, Simmons JH, Deymier PA, Runge K (2005) J Non-Cryst Solids 351:1532

    Article  CAS  Google Scholar 

  40. Huff NT, Demiralp E, Cagin T, Goddard WA III (1999) J Non-Cryst Solids 253:133

    Article  CAS  Google Scholar 

  41. van Beest BWH, Kramer GJ, van Santeen RA (1990) Phys Rev Lett 64:1955; Modifications suggested by L. R. Corrales (private communication)

  42. Ewald P (1921) Annln Phys 64:253

    Article  Google Scholar 

  43. Hoover wg (1985) Phys Rev A 31:1695; S. Nosé (1984) Mol Phys 52:255

  44. Tuckerman ME, Martyna GJ (2000) J Phys Chem B 104:159

    Article  CAS  Google Scholar 

  45. Wright AC (1993) J Non-Cryst Solids 159:264

    Article  CAS  Google Scholar 

  46. Allen MP, Tilldesley DJ (1999) In: Computer simulation of liquids. Oxford, UK

  47. Proctor BA, Whitney I, Johnson JW (1967) Proc Roy Soc (London) 297A:534

    Google Scholar 

  48. France PW, Paradine MJ, Reeve MH, Newns GR (1980) J Mat Sci 15:825

    Article  CAS  Google Scholar 

  49. Duncan WJ, France PW, Craig SP (1986) In: Strength of inorganic glasses. Plenum, New York, p 309

  50. Katz JI (1998) J Appl Phys 84:1928

    Article  CAS  Google Scholar 

  51. Bromley ST, Zwijnenburg MA, Maschmeyer Th (2003) Phys Rev Lett 90:35502

    Article  CAS  Google Scholar 

  52. Ceresoli D, Bernasconi M, Iarlori S, Parrinello M, Tosatti E (2000) Phys Rev Lett 84:3887

    Article  CAS  Google Scholar 

  53. Roder A, Kob W, Binder K (2001) J Chem Phys 114:7602

    Article  CAS  Google Scholar 

  54. Ferrari AM, Garrone E, Spoto G, Ugliengo P, Zecchina A (1995) Surf Sci 323:151

    Article  CAS  Google Scholar 

  55. Bunker BC, Haaland DM, Michalske TA, Smith WL (1981) Surf Sci 222:95

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the U.S. National Science Foundation under ITR award DMR-0325553.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Muralidharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muralidharan, K., Oh, KD., Deymier, P.A. et al. Molecular dynamics simulations of atomic-level brittle fracture mechanisms in amorphous silica. J Mater Sci 42, 4159–4169 (2007). https://doi.org/10.1007/s10853-007-1638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1638-2

Keywords

Navigation