Journal of Materials Science

, Volume 42, Issue 18, pp 7843–7849 | Cite as

Characterization of macroporous carbonate-substituted hydroxyapatite bodies prepared in different phosphate solutions

  • Yoong Lee
  • Yeong Min Hahm
  • Shigeki Matsuya
  • Masaharu Nakagawa
  • Kunio Ishikawa


Bone mineral of human is different in composition from the stoichiometric hydroxyapatite (Ca10(PO4)6(OH)2) in that it contains additional ions, of which CO 3 2− is the most abundant species. Carbonate-substituted hydroxyapatite (CHA) bodies were prepared by the hydrothermal treatment of highly porous calcium carbonate (CaCO3) body at 120 °C in 1 M M2HPO4 and M3PO4 solutions (M = NH4 or K). It was found that CaCO3 body was almost transformed into CHA body after hydrothermal treatment for 24 h irrespective of type of phosphate solution. However, a small amount of CaCO3 still remained after the treatment in K3PO4 for 48 h. Crystal shape of CHA bodies prepared in those solutions except for K2HPO4 was flake-like, which was different from that (stick-like) of original CaCO3 body used for the preparation of CHA body. CHA prepared in the K2HPO4 showed globule-like crystal. Average pore size and hole size of the CHA bodies were 150, 70 μm and their porosities were about 89% irrespective of the solution. Carbonate content was slightly higher in the CHA bodies obtained from potassium phosphate solutions than in those obtained from ammonium phosphate solutions. Mostly B-type CHA was obtained after the hydrothermal treatment in the potassium phosphate solutions. On the other hand, mixed A- and B-type CHA (ca. 1–2 in molar ratio) was obtained in the ammonium phosphate solutions. The content of CO 3 2− in the CHA body depended on the type of phosphate solution and was slightly larger in the potassium phosphate solutions.


Hydrothermal Treatment Phosphate Solution Hole Size Wako Chemical K3PO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported in part by a Grant-in-aid for Scientific Research from the Ministry of Education, Sports, Culture, Science, and Technology, Japan


  1. 1.
    Rau JV, Cesaro SN, Ferro D, Barinov SM, Fadeeva JV (2004) J Biomed Mater Res Part B: Appl Biomater 71B(2):441CrossRefGoogle Scholar
  2. 2.
    Baig AA, Fox JL, Su J, Wang Z, Otsuka M, Higuchi WI, Legeros RZ (1996) J Colloid Interface Sci 179:608CrossRefGoogle Scholar
  3. 3.
    Tang R, Henneman ZJ, Nancollas GH (2003) J Cryst Growth 249:614CrossRefGoogle Scholar
  4. 4.
    Rieters IY, Maeyer EAPD, Verbeeck RMH (1996) Inorg Chem 35:5791CrossRefGoogle Scholar
  5. 5.
    Wenk HR, Heidelbach F (1999) Bone 24(4):361CrossRefGoogle Scholar
  6. 6.
    Landi E, Tampieri A, Celotti G, Langenati R, Sandri M, Sprio S (2005) Biomaterials 26:2835CrossRefGoogle Scholar
  7. 7.
    Barralet J, Best S, Bonfield W (1998) J Biomed Mater Res 41(1):79CrossRefGoogle Scholar
  8. 8.
    Barralet J, Akao M, Aoki H (2000) J Biomed Mater Res 49(2):176CrossRefGoogle Scholar
  9. 9.
    Suchanek WL, Shuk P, Byrappa K, Riman RE, Tenhuisen KS, Janas VF (2002) Biomaterials 23:699CrossRefGoogle Scholar
  10. 10.
    Redey SA, Nardin M, Assolant DB, Rey C, Delannoy P, Sedel L, Marie PJ (2000) J Biomed Mater Res 50(3):353CrossRefGoogle Scholar
  11. 11.
    Barralet JE, Aldred S, Wright AJ, Coombes AGA (2002) J Biomed Mater Res 60:360CrossRefGoogle Scholar
  12. 12.
    Matsumoto T, Okazaki M, Inoue M, Ode S, Chien CC, Nakao H, Hamada Y, Takahashi J (2002) J Biomed Mater Res 60:651CrossRefGoogle Scholar
  13. 13.
    Barralet JE, Best SM, Bonfield W (2000) J Mater Sci: Mater Med 11:719CrossRefGoogle Scholar
  14. 14.
    Tonsuaadu K, Peld M, Leskela T, Mannonen R, Niinisto L, Veiderma M (1995) Thermochim Acta 256:55CrossRefGoogle Scholar
  15. 15.
    Feki HE, Savariault JM, Salah AB, Jemal M (2000) Solid State Sci 2:577CrossRefGoogle Scholar
  16. 16.
    Oliverira LM, Rossi AM, Lopes RT (2000) Appl Radiat Isotopes 52:1093CrossRefGoogle Scholar
  17. 17.
    Fleet ME, Liu X (2004) J Solid State Chem 177:3174CrossRefGoogle Scholar
  18. 18.
    Fleet ME, Liu X, King PL (2004) Am Mineral 89:1422Google Scholar
  19. 19.
    Landi E, Tampieri A, G Celotti, Vichi L, Sandri M (2004) Biomaterials 25:1763CrossRefGoogle Scholar
  20. 20.
    Fleet ME, Liu X (2003) J Solid State Chem 174:412CrossRefGoogle Scholar
  21. 21.
    Redey SA, Razzouk S, Rey C, Assollant DB, Leroy G, Nardin M, Cournot G (1999) J Biomed Mater Res 45:140CrossRefGoogle Scholar
  22. 22.
    Ellies LG, Lelson DGA, Featherstone JDB (1988) J Biomed Mater Res 22:541CrossRefGoogle Scholar
  23. 23.
    Navarro M, Valle SD, Martinez S, Zeppetelli S, Ambrosio L, Planell JA, Ginebra MP (2004) Biomaterials 25:4233CrossRefGoogle Scholar
  24. 24.
    Verveecke G, Lemaitre J (1990) J Cryst Growth 104:820CrossRefGoogle Scholar
  25. 25.
    Legeros RZ, Trautz OR (1967) Science 155:1409CrossRefGoogle Scholar
  26. 26.
    Legeros RZ (1991) In: Meyers HM (ed) Monographs in oral science, vol 15. KARGER, Basel, p 18Google Scholar
  27. 27.
    Bonel G, Montel G (1964) Comp Rend Acad Sci (Paris) 258:923Google Scholar
  28. 28.
    Legeros RZ (1991) In: Meyers HM (ed) Monographs in oral science, vol 15. KARGER, Basel, p 89Google Scholar
  29. 29.
    Cullity BD (1978) Elements of X-ray Diffraction, 2nd edn. Addison-Wesley Pub Co Inc, Philippines, p 102Google Scholar
  30. 30.
    Bouhaouss A, Bensaoud A, Laghzizil A, Ferhat M (2001) Int J Inorg Mater 3:437CrossRefGoogle Scholar
  31. 31.
    Dekker RJ, Bruijn JDD, Stigter M, Barrere F, Layrolle P, Blitterswijk CAV (2005) Biomaterials 26:5231CrossRefGoogle Scholar
  32. 32.
    Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Studies in Inorganic Chemistry 18, Elsevier, Amsterdam, pp 230–234Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yoong Lee
    • 1
    • 2
  • Yeong Min Hahm
    • 2
  • Shigeki Matsuya
    • 1
  • Masaharu Nakagawa
    • 1
  • Kunio Ishikawa
    • 1
  1. 1.Department of Biomaterials, Faculty of Dental ScienceKyushu UniversityHigashikuJapan
  2. 2.Department of Chemical Engineering, College of EngineeringDankook UniversitySeoulKorea

Personalised recommendations