Journal of Materials Science

, Volume 42, Issue 17, pp 7530–7536 | Cite as

Preparation and characterization of blends of recycled polystyrene with cassava starch

  • Tais A. P. F. Pimentel
  • Jussara A. Durães
  • Adriana L. Drummond
  • Daniela Schlemmer
  • Rosana Falcão
  • Maria José Araújo Sales


Secondary recycling is an alternative to solve at least part of the worldwide pollution problem caused by persistence of petrochemical plastic materials in the environment. In this work we report the secondary recycling of disposable polystyrene (PS) using cassava starch (Manihot esculenta Crantz) and a natural plasticizer extracted from a palm tree of the Amazon: Buriti (Mauritia flexuosa L.) oil. 13C-NMR spectroscopy reveals incorporation of the oil in the polymer matrix. Although phase separation had occurred, SEM depicts a very good dispersion of the thermoplastic starch (TPS) in the PS matrix with distinct domains. Thermal analyses indicate smaller thermal stability of the PS/TPS blends compared to PS and that possess intermediate characteristics between the pure PS and TPS, confirmed by DRX. Kinetic study shows a lowering of the activation energy for the thermal degradation of the blends.


Starch Differential Scanning Calorimetry Cassava Differential Scanning Calorimetry Curve Starch Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for XRD measurements at the Instituto de Geociências – Laboratório de Difração de Raios-X and financial support from UnB-IQ, CNPq, FAP-DF, FINATEC, FINEP-CT INFRA No. 0970/01 and to Dr. J. A. Dias (IQ-UnB) for NMR spectra acquisition.


  1. 1.
    Aggarwal P (1999) Thermochim Acta 340–341:195CrossRefGoogle Scholar
  2. 2.
    Ali MF, Siddiqui MN (2005) J Anal Appl Pyrolysis 74:282CrossRefGoogle Scholar
  3. 3.
    Kim J, Lee W, Lee S, Kim S, Choi M (2003) Catal Today 87:59CrossRefGoogle Scholar
  4. 4.
    Zhibo Z, Nishio S, Morioka Y, Ueno A, Ohkita H, Tochihara Y, Mizushima T, Kakuta N (1996) Catal Today 29:303CrossRefGoogle Scholar
  5. 5.
    Williams PT, Bagri R (2004) Int J Energy Res 28:31CrossRefGoogle Scholar
  6. 6.
    ke H, Li-hua T, Zi-Bin Z, Cheng-Fang Z (2005) Polym Degrad Stab 89:312CrossRefGoogle Scholar
  7. 7.
    Karaduman A, Simsek EH, Cicek B, Bilgesu AY (2002) J Anal Appl Pyrolysis 62:273CrossRefGoogle Scholar
  8. 8.
    Pedroso AG, Rosa DS (2005) Carbohydr Polym 59:1CrossRefGoogle Scholar
  9. 9.
    Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) Polymer 44:1517CrossRefGoogle Scholar
  10. 10.
    Thomson DA (1995) Plast Rubber Paper Recycling ACS Symp Ser 609:89Google Scholar
  11. 11.
    Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh P (1999) Polym Degrad Stab 66:323CrossRefGoogle Scholar
  12. 12.
    Parra DF, Tadini CC, Ponce P, Lugao AB (2004) Carbohydr Polym 58:475CrossRefGoogle Scholar
  13. 13.
    Fran ça LF, Reber G, Meireles MAA, Machado NT, Brunner G (1999) J Supercrit Fluids 14:247CrossRefGoogle Scholar
  14. 14.
    Bernal-Alvarado J, Mansanares AM, da Silva EC, Moreira SGC (2003) Ver Sci Instrum 74:697CrossRefGoogle Scholar
  15. 15.
    Garcia-Quiroz A, Moreira SGC, de Morais AV, Silva AS, Rocha GN, Alcântara P (2003) Instrum Sci Technol 31:93CrossRefGoogle Scholar
  16. 16.
    Albuquerque MLS, Guedes I, Alcântara P, Moreira SGC (2003) Vib Spectrosc 33:127CrossRefGoogle Scholar
  17. 17.
    Albuquerque MLS, Guedes I, Alcântara P, Moreira SGC, Neto NMB, Correa DS, Zílio SC (2005) J Braz Chem Soc 16:1113CrossRefGoogle Scholar
  18. 18.
    Lognay G, Trebejo E, Jordan E, Marlier M, Severin M, Ortiz de Záate I (1987) Grasas y Aceites 38:303Google Scholar
  19. 19.
    Durães JA, Drummond AL, Pimentel TAPF, Murta MM, Moreira SGC, Bicalho FS, Sales MJS (2006) Eur Polym J (unpublished)Google Scholar
  20. 20.
    Durães JA, Drummond AL, Pimentel TAPF, Murta MM, Moreira SGC, Sales MJS (2004) Br PI 0403407-4Google Scholar
  21. 21.
    Chrastil J (1987) Carbohydr Res 159:154CrossRefGoogle Scholar
  22. 22.
    Godbole S, Gote S, Latkar M, Chakrabarti T (2003) Bioresour Technol 86:33CrossRefGoogle Scholar
  23. 23.
    Ozawa T (1965) Bull Chem Soc Jpn 38:1881CrossRefGoogle Scholar
  24. 24.
    Lorcks J (1998) Polym Degrad Stab 59:245CrossRefGoogle Scholar
  25. 25.
    Wu RR, Kao HM, Chaing JC, Woo EM (2002) Polymer 43:171CrossRefGoogle Scholar
  26. 26.
    Jayasekara R, Harding I, Bowater I, Christie GBY, Lonergan GT (2004) Polym Test 23:17CrossRefGoogle Scholar
  27. 27.
    Tester RF, Karkalas J, Qi X (2004) J Cereal Sci 39:151CrossRefGoogle Scholar
  28. 28.
    Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) Carbohydr Polym 45:189CrossRefGoogle Scholar
  29. 29.
    Shalaby SW (1981) In: Turi EA (ed) Thermal characterization of polymeric materials. Academic Press Inc., Florida, p 287Google Scholar
  30. 30.
    Rudnik E, Matushek G, Milanov N, Kettrup A (2006) J Thermal Anal Calorimetr 85:267CrossRefGoogle Scholar
  31. 31.
    Ozawa T (1971) Polymer 12:150CrossRefGoogle Scholar
  32. 32.
    Chan JH, Balke ST (1997) Polym Degrad Stab 57:135CrossRefGoogle Scholar
  33. 33.
    Leloup LM, Colonna P, Buleon A (1991) J Cereal Sci 13:1CrossRefGoogle Scholar
  34. 34.
    Bastioli C (1995) In: Scott G, Gilead D (eds) Degradable polymers. Chapman & Hall, London, p 112Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Tais A. P. F. Pimentel
    • 1
  • Jussara A. Durães
    • 1
  • Adriana L. Drummond
    • 1
  • Daniela Schlemmer
    • 1
  • Rosana Falcão
    • 2
  • Maria José Araújo Sales
    • 1
  1. 1.Laboratório de Pesquisa em Polímeros (LabPol), Instituto de QuímicaUniversidade de BrasíliaBrasiliaBrazil
  2. 2.Laboratório de Microscopia Eletrônica do RGB – EMBRAPASan PauloBrazil

Personalised recommendations