Journal of Materials Science

, Volume 43, Issue 1, pp 345–349 | Cite as

Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel

  • Evandro A. Morais
  • Luis V. A. Scalvi
  • Américo Tabata
  • José B. B. De Oliveira
  • Sidney J. L. Ribeiro


Photoluminescence data of Eu-doped SnO2 xerogels are presented, yielding information on the symmetry of Eu3+ luminescent centers, which can be related to their location in the matrix: at lattice sites, substituting to Sn4+, or segregated at particles surface. Influence of doping concentration and/or particle size on the photoluminescence spectra obtained by energy transfer from the matrix to Eu3+ sites is investigated. Results show that a better efficiency in the energy transfer processes is obtained for high symmetry Eu3+ sites and low doping levels. Emission intensity from 5D07F1 transition increases as the temperature is raised from 10 to 240 K, under excitation at 266 nm laser line, because in this transition the multiphonon emission becomes significant only above 240 K. As an extension of this result, we predict high effectiveness for room temperature operation of Eu-based optical communication devices. X-ray diffraction data show that the impurity excess inhibits particle growth, which may influence the asymmetry ratio of luminescence spectra.


SnO2 Laser Line Energy Transfer Process Asymmetry Ratio SnO2 Lattice 



Authors acknowledge CAPES, CNPq and FAPESP for financial support.


  1. 1.
    Coffa S, Franzo G, Priolo F, Polman A, Serna R (1994) Phys Rev B 49:16313CrossRefGoogle Scholar
  2. 2.
    Ishii M, Komuro S, Morikawa T (2003) J Appl Phys 94:3823CrossRefGoogle Scholar
  3. 3.
    Ray SC, Karanjai MK, Dasgupta D (1998) Surf Coat Technol 102:73CrossRefGoogle Scholar
  4. 4.
    Dien E, Laurent JM, Smith A (1999) J Eur Cer Soc 19:787CrossRefGoogle Scholar
  5. 5.
    Rockenbecher J, ZumFelde U, Tischer M, Troger L, Haase M, Weller H (2000) J Chem Phys 112:4296CrossRefGoogle Scholar
  6. 6.
    Peng H, Song H, Chen B, Wang J, Lu S, Kong X, Zhang J (2003) J Chem Phys 118:3277CrossRefGoogle Scholar
  7. 7.
    Zhang H, Fu X, Niu S, Sun G, Xin Q (2005) J Luminescence 115:7CrossRefGoogle Scholar
  8. 8.
    Yu L, Song H, Lu S, Liu Z, Yang L, Wang T, Kong X (2004) Mat Res Bull 39:2083CrossRefGoogle Scholar
  9. 9.
    Brito GES, Ribeiro SJL, Briois V, Dexpert -Ghys J, Santilli CV, Pulcinelli SH (1997) . J Sol-Gel Sci Technol 8:261Google Scholar
  10. 10.
    Ribeiro SJL, Pulcinelli SH, Santilli CV (1992) Chem Phys Lett 190:64CrossRefGoogle Scholar
  11. 11.
    Morais EA, Ribeiro SJL, Scalvi LVA, Santilli CV, Ruggiero LO, Pulcinelli SH, Messaddeq Y (2002) J Alloys Comp 344:217CrossRefGoogle Scholar
  12. 12.
    Matsuoka T, Tohda T, Nitta T (1983) J Eletrochem Soc 130:417CrossRefGoogle Scholar
  13. 13.
    Matsuoka T, Kasahara Y, Tsuchyia M, Nitta T, Hayakawa S (1978) J Eletrochem Soc 125:102CrossRefGoogle Scholar
  14. 14.
    Yanes AC, DelCastillo J, Torres M, Peraza J, Rodriguez VD, Mendes-Ramos J (2004) Appl Phys Lett 85:2343CrossRefGoogle Scholar
  15. 15.
    Powder Diffraction File, Inorganic Vol. 21, Published by the JCPDS, Swarthmore, 1983Google Scholar
  16. 16.
    Nogami M, Enomoto T, Hayakawa T (2002) J Luminescence 97:147CrossRefGoogle Scholar
  17. 17.
    Weber MJ (1968) Phys Rev 171:283CrossRefGoogle Scholar
  18. 18.
    Morais EA, Scalvi LVA, Geraldo V, Scalvi RMF, Ribeiro SJL, Santilli CV, Pulcinelli SH (2004) J Eur Cer Soc 24:1857CrossRefGoogle Scholar
  19. 19.
    Fu X, Zhang H, Niu S, Xin Q (2005) J Solid State Chem 198:603CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Evandro A. Morais
    • 1
    • 2
  • Luis V. A. Scalvi
    • 1
    • 2
  • Américo Tabata
    • 1
    • 2
  • José B. B. De Oliveira
    • 1
    • 2
  • Sidney J. L. Ribeiro
    • 3
  1. 1.Depto. Fisica - FCUNESPBauruBrazil
  2. 2.Programa de Pós-Graduação em Ciência e Tecnologia de MateriaisUNESPSao PauloBrazil
  3. 3.Inst. QuímicaUNESPAraraquaraBrazil

Personalised recommendations