Journal of Materials Science

, Volume 42, Issue 17, pp 7307–7310 | Cite as

The effect of annealing time on r.f. magnetron sputtered La3Ga5SiO14 films

  • Feng-Wei Wang
  • Yi Hu
  • Hur-Lon Lin


La3Ga5SiO14 (LGS) thin films have been grown by r.f. sputtering at 600 °C on (200)-textured MgO buffer layers deposited also by r.f. sputtering on Si substrates. The evolution of crystalline phases in the thin films as a function of time was examined by X-ray diffraction and scanning electron microscopy before and after annealing in air for various times. The morphology of the crystals formed and their formation mechanism were discussed.


Annealing Time Surface Free Energy Ga2O3 Liquid Phase Epitaxy Increase Annealing Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors express our thanks to W.-Y. Wei for discussion and advices. Financial support by National Science Council, Taiwan, the Republic of China under Contract No. NSC 92-2216-E-036-015 is gratefully acknowledged.


  1. 1.
    Shimamura K, Takeda H, Kohno T, Fukuda T (1996) J Cryst Growth 163:388CrossRefGoogle Scholar
  2. 2.
    Bohm J, Heimann RB, Hengst M, Roewer R, Schindler J (1999) J Cryst Growth 204:128CrossRefGoogle Scholar
  3. 3.
    Bohm J, Chilla E, Flannery C, Frohlich HJ, Hauke T, Heimann RB, Hengst M, Straube U (2000) J Cryst Growth 216:293CrossRefGoogle Scholar
  4. 4.
    Stade J, Bohaty L, Hengst M, Heimann RB (2002) Cryst Res Technol 37:1113CrossRefGoogle Scholar
  5. 5.
    Kadoto M, Nakanishi J, Kitamura T, Kumatoria M (1999) Jpn J Appl Phys 38:3288CrossRefGoogle Scholar
  6. 6.
    Udo S, Bungo A, Jian C (1999) Jpn J Appl Phys 38:5516CrossRefGoogle Scholar
  7. 7.
    da Cunda MP, Fagundes SA (1999) IEEE Trans Ultrason Ferroelec Freq Control 46:1583CrossRefGoogle Scholar
  8. 8.
    Adachi M, Karaki T, Miyamoto W (1999) Jpn J Appl Phys 38:3283CrossRefGoogle Scholar
  9. 9.
    Wang SQ, Uda S (2003) J Cryst Growth 250:463CrossRefGoogle Scholar
  10. 10.
    Klemenz C (2003) J Cryst Growth 237–239:714Google Scholar
  11. 11.
    Zhang H, Singh NB, Berghmans A, Adam JD, Tidrow S, Fazi C (2002) J Cryst Growth 234:660CrossRefGoogle Scholar
  12. 12.
    Zhang H, Singh NB, Berghmans A, Adam JD, Tidrow S, Fazi C (2003) J Mater Sci Lett 22:1621CrossRefGoogle Scholar
  13. 13.
    Klemenz C (2003) J Cryst Growth 250:34CrossRefGoogle Scholar
  14. 14.
    Klemenz CF, Malocha DC (2003) Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum. In Proceedings of the 2003 IEEE International, p 642–645Google Scholar
  15. 15.
    Wang F-W, Hu Y, Lin H-L (2005) ICMAT 2005 3rd International Conference on Materials for Advanced Technologies, Symposium O, Singapore, p 57Google Scholar
  16. 16.
    Jung IH, Auh KH (1999) Mater Lett 41:241CrossRefGoogle Scholar
  17. 17.
    Fujimura N, Nishihara T, Gato S, Xu J, Ito T (1993) J Cryst Growth 130:269CrossRefGoogle Scholar
  18. 18.
    Chani VI, Takeda H, Fukuda T (1999) Mater Sci Eng B60:212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Materials EngineeringTatung UniversityTaipeiTaiwan, ROC

Personalised recommendations