Journal of Materials Science

, Volume 43, Issue 2, pp 597–601 | Cite as

The effect of polysiloxane on the properties of Al2O3-NbC composite material produced by pyrolysis process

  • W. Acchar
  • M. Diniz
  • Y. A. A. Fonseca
  • C. R. C. Sousa
  • E. S. Lima


Recently, studies have been developed in order to obtain Al2O3-NbC composite materials. The reinforced materials have shown good potential to be used as cutting tool materials at high-speed cutting and high temperature as a substitute to WC-Co material. The main disadvantage to produce these alumina-reinforced materials is the necessity to use pressure assisted sintering or high sintering temperatures to produce dense bodies. Manufacturing of composite ceramic materials derived from polymer reactive filler has been intensively investigated. Polymer pyrolysis is a relatively new and very promising method for obtaining ceramic material in complex shapes and lower sintering temperatures. This work investigated a ceramic composite matrix based in SiCxOy and Al2O3 and reinforced with NbC obtained by means of the active fillers pyrolysis process. The results obtained in this work demonstrate that using a mixture of polysiloxanes produces a composite material with better properties when compared to others polymer materials.


Niobium Sinter Temperature Polysiloxane Ceramic Matrix Composite Porosity Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Authors of this work thank to CNPq for the financial support and the Material Engineering Department of Lorena Chemical Engineering University, for the niobium powder.


  1. 1.
    Yajima S, Hayashi J, Omori M, Okamura K (1976) Nature 261:683CrossRefGoogle Scholar
  2. 2.
    Greil P (1995) J Am Ceram Soc 78:835CrossRefGoogle Scholar
  3. 3.
    Schiavon MA, Radovanovic E, Yoshida IVP (2002) Powder Techn 123:232CrossRefGoogle Scholar
  4. 4.
    Radovanovic E, Gozzi MF, Gonçalves MC, Yoshida IVP (1999) J Non-Crys Sol 248:37 CrossRefGoogle Scholar
  5. 5.
    Kaindl A, Lehner W, Greil P, Kim DJ (1999) Mater Sci Eng A260:101Google Scholar
  6. 6.
    Ma QS, Chen ZH, Zheng WW, Hu HF (2005) Ceram Inter 31:305CrossRefGoogle Scholar
  7. 7.
    Herzog A, Thunemann M, Vogt U, Beffort O (2005) J Europ Ceram Soc 25:187CrossRefGoogle Scholar
  8. 8.
    Kroll P (2005) J Europ Ceram Soc 25:163CrossRefGoogle Scholar
  9. 9.
    Greil P (1998) J Europ Ceram Soc 18:1905CrossRefGoogle Scholar
  10. 10.
    Pasotti MR, Bressiani AH, Bressiani JC (1998) Inter J Refract Metals Hard Mater 16:423CrossRefGoogle Scholar
  11. 11.
    Acchar W, Martinelli AE, Vieira FA, Cairo CCA (2000) Mat Sci Eng A284:84Google Scholar
  12. 12.
    Acchar W, Wolff DMB (2001) Inter J Refract Metals Hard Mater 19:405CrossRefGoogle Scholar
  13. 13.
    Scheffler M, Dernovsek O, Schwarze D, Bressiani AH, Bressiani JC, Acchar W, Greil P (2003) J Mater Sci 38:4925CrossRefGoogle Scholar
  14. 14.
    Dernovsek O, Bressiani JC, Bressiani AH, Acchar W, Greil P (2000) J Mater Sci 35:1CrossRefGoogle Scholar
  15. 15.
    Schiavon MA, Yoshida IVP, Dantas ACS, Acchar W (2005) Mater Sci Forum 498–499:369 CrossRefGoogle Scholar
  16. 16.
    Walter S, Sorarú GD, H Bréquel, Enzo S (2002) J Europ Ceram Soc 22:2389CrossRefGoogle Scholar
  17. 17.
    Acchar W, Wolff DMB (2005) Mater Sci Eng A396:251Google Scholar
  18. 18.
    Frage N, Levin L, Frumim N, Gelbstein M, Daniel MP (2003) J Mater Process Technol 143–144:486CrossRefGoogle Scholar
  19. 19.
    Srinivasa B, Jayara V (2001) Acta Mater 49:2373CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • W. Acchar
    • 1
  • M. Diniz
    • 1
  • Y. A. A. Fonseca
    • 1
  • C. R. C. Sousa
    • 2
  • E. S. Lima
    • 2
  1. 1.Post-Graduation ProgramFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Graduate Program in Materials EngineeringFederal University of Rio Grande do NorteNatalBrazil

Personalised recommendations