Skip to main content
Log in

Morphological control in solvothermal synthesis of titanium oxide

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A solvothermal method is described for preparing nanomaterials of titanium oxide with different morphologies. Nanostructures, such as wire, rod, cube, and fiber, were synthesized in mass quantities by controlling either the concentrations of the precursor or growth temperature and introducing different additives in one simple system based on titanium tetroisopropoxide and ethylene glycol. Hydrothermal treatment of the base system produced nanowires with diameters around 40 nm. The addition of ethylenediamine (EDA) to the system inhibited the radial expansion of the nanowires, resulting in nanorods and nanofibers with diameters down to about 2 nm. Increasing the EDA concentration tended to induce mesoscale self-assembly of nanofibers into arrays. The presence of water promoted the formation of nearly spherical nanoparticles with sizes dependent on the EDA concentration. At higher temperatures, the same system yielded well-defined nanobelts or nanocubes. The replacement of EDA by 2,4-pentanedione favored the formation of nanosheets while tetramethylammonium hydroxide appeared to confuse the growth of nanorods, creating a continuous network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hadjiivanov KI, Klissurski DG (1996) Chem Soc Rev 25:61

    Article  CAS  Google Scholar 

  2. Anpo M, Takeuchi M (2003) J Catal 216:505

    Article  CAS  Google Scholar 

  3. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobio C: Photochem Rev 1:1

    Article  CAS  Google Scholar 

  4. Kaneko M, Okura I (2002) In: Photocatalysis science and technology, Kodansha, Springer

  5. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Nature 395:583

    Article  CAS  Google Scholar 

  6. Gratzel M (2001) Nature 414:338

    Article  CAS  Google Scholar 

  7. Zhang D, Yoshida T, Furuta K, Minoura H (2004) J Photochem Photobio A: Chem 164:159

    Article  CAS  Google Scholar 

  8. Akikusa J, Khan SUM (2002) Int J Hydrogen Energy 27:863

    Article  CAS  Google Scholar 

  9. Fujihara K, Ohno T, Matsumura M (1998) J Chem Soc, Faraday Trans 94:3705

    Article  CAS  Google Scholar 

  10. Meier K, Gratzel M (2002) Chemphyschem 4:371

    Article  Google Scholar 

  11. Paunesku T, Rajh T, Wiederrecht G, Master J, Vogt S, Stojicevic N, Protic M, Lai B, Oryhon J, Thurnauer M, Woloschak G (2003) Nat Mater 2:343

    Article  CAS  Google Scholar 

  12. Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14539

    Article  CAS  Google Scholar 

  13. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2427

    Article  Google Scholar 

  14. Li J, Wang LW (2003) Nano Lett 3:1357

    Article  CAS  Google Scholar 

  15. Lei Y, Zhang LD, Meng GW, Li GH, Zhang XY, Liang CH, Chen W, Wang SX (2001) Appl Phys Lett 78:1125

    Article  CAS  Google Scholar 

  16. Zhang Q, Gao L (2003) Langmuir 19:967

    Article  CAS  Google Scholar 

  17. Sugimoto T, Zhou X, Muramatsu A (2003) J Colloid Interface Sci 259:53

    Article  CAS  Google Scholar 

  18. Sugimoto T (2003) Chem Eng Technol 26:313

    Article  CAS  Google Scholar 

  19. Chemseddine A, Moritz T (1999) Eur Inorg Chem 1999:235

    Article  Google Scholar 

  20. Trentler TJ, Denler TE, Bertone JF, Agrawal A, Colvin VL (1999) J Am Chem Soc 121:1613

    Article  CAS  Google Scholar 

  21. Armstrong AR, Armstrong G, Canales J, Bruce PG (2004) Angew Chem Int Ed 43:2286

    Article  CAS  Google Scholar 

  22. Jun Y, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP (2003) J Am Chem Soc 125:15981

    Article  CAS  Google Scholar 

  23. Fieevet F, Lagier JP, Figlarz M (1989) MRS Bull 14:29

    Article  Google Scholar 

  24. Sun Y, Xia Y (2002) Adv Mater 14:833

    Article  CAS  Google Scholar 

  25. Wang Y, Jiang X, Xia Y (2003) J Am Chem Soc 125:16176

    Article  CAS  Google Scholar 

  26. Jiang X, Wang Y, Herricks T, Xia Y (2004) J Mater Chem 14:695

    Article  CAS  Google Scholar 

  27. Wang Y, Jiang X, Herricks T, Xia Y (2004) J Phys Chem B 108:8631

    Article  CAS  Google Scholar 

  28. Jana NR (2004) Angew Chem 116:1562

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Center of Advanced Materials for the Purification of Water with Systems, National Science Foundation, under Agreement Number CTS-0120978 and by the National Basic Research Program of China through Grant No. 2006CB601201. Characterization was carried out in CMM and LSF centers at the Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, which is partially supported by the U.S. Department of Energy under grant DEFG02-91-ER45439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ku Shang.

Additional information

Rong-Cai Xie—Formerly with the University of Illinois at Urbana-Champaign.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, RC., Shang, J.K. Morphological control in solvothermal synthesis of titanium oxide. J Mater Sci 42, 6583–6589 (2007). https://doi.org/10.1007/s10853-007-1506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1506-0

Keywords

Navigation