Journal of Materials Science

, Volume 41, Issue 13, pp 4047–4054 | Cite as

Hydrolytic ageing of syntactic foams for thermal insulation in deep water: degradation mechanisms and water uptake model

  • V. Sauvant-Moynot
  • N. Gimenez
  • H. Sautereau


This paper focuses on a novel syntactic foam formulation based on a model diepoxy-diamine matrix with a controlled architecture, discusses the factors governing the long-term performance of these materials and gives a predictive model to assist in the design of efficient and safe insulating systems.

Hygrothermal ageing in deionized water at 20°C, 60°C, 100°C and 120°C over 18 months (with no additional pressure) is followed by both gravimetric and impedance measurements. This original protocol provides the evolution with time of both mass gain and intrinsic material conductivity. Attention is paid to the degradation phenomenon observed after the matrix has reached saturation and the corresponding increase of both mass gain and conductivity. The latter suggests the occurrence of ionic extraction from the microsphere glass undergoing water leaching.

A model of mass gain is proposed to explain the gravimetric data and predict the long-term mass gain that governs the mechanical and thermal performances. The temperature dependence of fitting parameters follows an Arrhenius law and activation energies calculated support the scheme of glass corrosion by water during hygrothermal ageing, with respect to the literature.


Foam Mass Gain Water Diffusion Syntactic Foam Glass Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. FRANKLIN and A. WRIGHT, in Proceedings of the 13th International Conference on Pipeline Protection, edited by BHR Group Limited, (Edinburgh, UK, September 1999).Google Scholar
  2. 2.
    L. WATKINS and E. HERSHEY, World Pipelines 4 (2004) 49.Google Scholar
  3. 3.
    B. VAN BELLE, in “Offshore Technology Conference”, Houston, Texas (USA) May 2002.Google Scholar
  4. 4.
    A. AVENA, Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, 1987.Google Scholar
  5. 5.
    G. FONBLANC, Ph.D. Thesis, Université Bordeaux I, 1986.Google Scholar
  6. 6.
    L. WATKINS, in 7th International Conference on Offshore Mechanics and Arctic Engineering, Houston, Texas (USA) 1988.Google Scholar
  7. 7.
    T. FINE, H. SAUTEREAU and V. SAUVANT-MOYNOT, J. Mat. Sci. 38 (2003) 2709.CrossRefGoogle Scholar
  8. 8.
    D. CHOQUEUSE, A.CHOMARD and C. BUCHERIE, in Offshore Technology Conference, Houston, Texas (USA) May 2002.Google Scholar
  9. 9.
    V. A. KOCHETKOV and R. D. MAKSIMOV, Mechanics 32 (1996) 61.Google Scholar
  10. 10.
    D. CHOQUEUSE, A. CHOMARD and P. CHAUCHOT, in Offshore Technology Conference, Houston, Texas (USA) May 2004.Google Scholar
  11. 11.
    A. BRINI, F. PRADEL, A. BENHAMIDA and H. DUMONTET, in ICCM-14, (San Diego, California (USA), July 2003).Google Scholar
  12. 12.
    A. BONNET, J. P. PASCAULT, H. SAUTEREAU, M. TAHA and Y. CAMBERLIN, Macromolecules 32 (1999) 8517.CrossRefGoogle Scholar
  13. 13.
    E. GIRARD-REYDET, C. C. RICCARDI, H. SAUTEREAU and J. P. PASCAULT, Macromolecules 28 (1995) 7599.CrossRefGoogle Scholar
  14. 14.
    E. MAIRE, N. GIMENEZ, V. SAUVANT-MOYNOT and H. SAUTEREAU, “Phil. Trans. of the Royal Society of London” (London, UK, November 2004), published under doi 10.1098/rsa.2005.1691.Google Scholar
  15. 15.
    D. M. BRASHER and A. H. KINGSBURY, J. Appl. Chem. 4 (1954) 62.CrossRefGoogle Scholar
  16. 16.
    S. DUVAL, M. KEDDAM, F. ROPITAL, V. SAUVANT and H. TAKENOUTI, in Eurocorr 2001 (Riva Del Garda, Italy, October 2001).Google Scholar
  17. 17.
    B. ELLIS, in “Chemistry and Technology of Epoxy Resins” (Chapman & Hall, 1993).Google Scholar
  18. 18.
    S. DUVAL, M. KEDDAM, F. ROPITAL, V. SAUVANT-MOYNOT and H. TAKENOUTI, in Eurocorr 2003 (Budapest, Hungary, October 2003).Google Scholar
  19. 19.
    H. OCHS, J. VOGELSANG and G. MEYER, Progr. Org. Coat. 46 (2003) 182.CrossRefGoogle Scholar
  20. 20.
    V. SAUVANT-MOYNOT, S. SCHWEITZER, J. GRENIER and S. DUVAL, in Eurocorr 2004 (Nice, France, September 2004).Google Scholar
  21. 21.
    J. P. PASCAULT, H. SAUTEREAU, J. VERDU and R. J. J. WILLIAMS, in “Thermosetting Polymers” (Marcel Dekker Inc., New York, 2002).Google Scholar
  22. 22.
    R. J. CHARLES, J. Appl. Phys. 29 (1958) 1549.CrossRefGoogle Scholar
  23. 23.
    A. PAUL, in “Chemistry of Glasses” (Chapman & Hall, 1990), p. 179.Google Scholar
  24. 24.
    B. C. BUNKER, J. Non-Cryst. Solids 179 (1994) 300.CrossRefGoogle Scholar
  25. 25.
    G. I. COOPER and G. A. COX, Applied Geochemistry 11 (1996) 511.CrossRefGoogle Scholar
  26. 26.
    K. KAMIDE, in “Thermodynamics of Polymer Solutions—Phase Equilibria and Critical Phenomena” (Elsevier, Amstedam, 1990), p. 651.Google Scholar
  27. 27.
    A. LEKATOU, S. E. FAIDI, D. GHIDAOUI, S. B. LYON and R. C. NEWMAN, Composites 28A (1997) 223.Google Scholar
  28. 28.
    K. SAKAI, J. Membrane Sci. 96 (1994) 91.CrossRefGoogle Scholar
  29. 29.
    R. BATTISTELLA, Ph.D. Thesis, Ecole de Mulhouse (1971).Google Scholar
  30. 30.
    D. LUO, J. FRANKLIN and A. WRIGHT, in “Proceedings of the 14th International Conference on Pipeline Protection, edited by BHR Group Limited”, (Edinburgh, UK, October 2001).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • V. Sauvant-Moynot
    • 1
  • N. Gimenez
    • 1
    • 2
  • H. Sautereau
    • 2
  1. 1.Institut Français du Pétrole (IFP)Vernaison
  2. 2.Laboratoire des Matériaux Macromoléculaires LMM/IMP UMR CNRS n°5627Institut National des Sciences Appliquées de LyonVilleurbanne Cedex

Personalised recommendations