Skip to main content
Log in

Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of processing parameters and particle volume fraction was experimentally studied for epoxy clay nanocomposites. Nanocomposites were prepared using onium ion surface modified montmorillonite (MMT) layered clay and epoxy resin (DEGBF). Two different techniques were used for dispersing the clay particles in the epoxy matrix, viz. high-speed shear dispersion and ultrasonic disruption. The volume fraction of clay particles was systematically varied from 0.5 to 6%, and mechanical properties, viz. flexural modulus and fracture toughness, were studied as a function of clay volume fraction and the processing technique. The flexural modulus was observed to increase monotonously with increase in volume fraction of clay particles, while, the fracture toughness showed an initial increase on addition of clay particles, but a subsequent decrease at higher clay volume fractions. In general, nanocomposites processed by shear mixing exhibited better mechanical properties as compared to those processed by ultrasonication. Investigation by X-ray diffraction (XRD) revealed exfoliated clay structure in most of the nanocomposites that were fabricated. Morphologies of the fracture surfaces of nanocomposites were studied using a scanning electron microscopy (SEM). Presence of river markings at low clay volume fractions provided evidence of extrinsic toughening taking place in an otherwise brittle epoxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. VAIA and E. P. GIANNELIS, MRS Bull. 26 (2001) 394.

  2. X. KORNMANN, L. A. BERGLUND, J. STERTE and E. P. GIANNELIS, Polym. Eng. Sci. 38 (1998) 1351.

  3. E. P. GIANNELIS, Adv. Mater. 8 (1996) 29.

  4. R. P. SINGH, M. ZHANG and D. CHAN, J. Mater. Sci. 37 (2002) 781.

  5. S. C. ZUNJARRAO and R. P. SINGH, in Proceedings of the 2004 SEM X International Congress & Exposition on Experimental and Applied Mechanics, Costa Mesa, California USA, (Society for Experimental Mechanics, Inc., 2004) p. 375.

  6. C. B. NG, L. S. SCHADLER and R. W. SIEGEL, Nanostruct. Mater. 12 (1999) 507.

  7. A. ALLAOUI, S. BAI, H. M. CHENG and J. B. BAI, Compos. Sci. Technol. 62 (2002) 1993.

  8. R. KRISHNAMOORTI and R. A. VAIA, in Proceedings of the 219th National Meeting of the American Chemical Society, Mar 26–30 2000, San Francisco, CA, United States, edited by R. A. Vaia (Oxford University Press, 2002) p. 225.

  9. T. J. PINNAVAIA, T. LAN, Z. WANG, H. Z. SHI and P. D. KAVIRATNA, “Nanotechnology” (American Chemical Society, 1155 Sixteenth St NW, Washington, DC 20036, 1996).

  10. Y. KOJIMA, A. USUKI, M. KAWASUMI, A. OKADA, Y. FUKUSHIMA, T. KURAUCHI and O. KAMIGAITO, J. Mater. Res. 8 (1993) 1185.

  11. A. USUKI, Y. KOJIMA, M. KAWASUMI, A. OKADA, T. KURAUCHI and O. KAMIGAITO, in Proceedings of the Washington, DC Meeting 1990 of the ACS, Division of Polymer Chemistry, Aug 26–31 1990, Washington, DC, USA, (ACS, Washington, DC, USA, 1990) p. 651.

  12. T. M. WU and J. Y. WU, J. Macromol. Sci., Phys. 41 B (2002) 17.

  13. K. MASENELLI-VARLOT, E. REYNAUD, G. VIGIER and J. VARLET, J. Polym. Sci., Part B: Polym. Phys. 40 (2002) 272.

    Article  CAS  Google Scholar 

  14. T. J. PINNAVAIA, T. LAN, P. D. KAVIRATNA and M. S. WANG, in Proceedings of the 1994 MRS Spring Meeting, Apr 4–8, 1994, San Francisco, CA, USA, (Materials Research Society, Pittsburgh, PA, USA, 1994) p. 81.

  15. T. AGAG, T. KOGA and T. TAKEICHI, Polymer 42 (2001) 3399.

  16. M. O. ABDALLA, D. DEAN and S. CAMPBELL, in Proceedings of the Organic/Inorganic Hybrid Materials 2002, Apr 1–5 2002, San Francisco, CA, United States, (Materials Research Society, 2002) p. 179.

  17. M. MEHRABZADEH, M. R. KAMAL and V. MOLLET, in Proceedings of the 61st Annual Technical Conference ANTEC 2003, May 4–8, 2003, Nashville, TN, United States, (Society of Plastics Engineers, 2003) p. 2260.

  18. F. D. KUCHTA, P. J. LEMSTRA, A. KELLER, L. F. BATENBURG and H. R. FISCHER, in Proceedings of the Materials Research Society Symposium - 1999 MRS Spring Meeting - Symposium DD, ‘Organic/Inorganic Hybrid Materials’, Apr 5-Apr 9, 1999, San Francisco, CA, USA, (Materials Research Society, Warrendale, PA, USA, 1999) p. 363.

  19. G. CHEN, X. CHEN, Z. LIN and W. YE, J. Mater. Sci. Lett. 18 (1999) 1761.

    Article  CAS  Google Scholar 

  20. G. J. JIANG and H. Y. TSAI, American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, The San Francisco Meeting, Mar 26–Mar 31, 2000 41 (2000) 621.

  21. M. PRAMANIK, B. K. SAMANTARAY, A. K. BHOWMICK and S. K. SRIVASTAVA, J. Polym. Sci., Part B: Polym. Phys. 40 (2002) 2065.

  22. Y. TANG, Y. HU, J. WANG, R. ZONG, Z. GUI, Z. CHEN, Y. ZHUANG and W. FAN, J. Appl. Polym. Sci. 91 (2004) 2416.

  23. M. ALEXANDRE and P. DUBOIS, Mater. Sci. Eng., R 28 (2000) 1.

  24. O. BECKER, R. VARLEY and G. SIMON, Polymer 43 (2002) 4365.

  25. D. RATNA, N. R. MANOJ, R. VARLEY, R. K. S. RAMAN and G. P. SIMON, Polym. Int. 52 (2003) 1403.

  26. T. LAN and T. J. PINNAVAIA, Chem. Mater. 6 (1994) 2216.

  27. X. KORNMANN, H. LINDBERG and L. A. BERGLUND, Polymer 42 (2001) 4493.

    Article  Google Scholar 

  28. Idem., ibid. 42 (2001) 1303.

  29. S. ROY, H. LU, S. PERIASAMY and J. MA, in Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, United States, (American Inst. Aeronautics and Astronautics Inc., 2003) p. 2761.

  30. AMERICAN SOCIETY OF TESTING AND MATERIALS, “Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending”, Annual Book of ASTM standards, Designation: D6272-02, 2003.

  31. Z. HASHIN and S. SHTRIKMAN, J. Mech. Phys. Solids 11 (1963) 127.

    Article  Google Scholar 

  32. A. N. NORRIS, Int. J. Solids Struct. 26 (1990) 663.

  33. J. WANG and R. PYRZ, Compo. Sci. Tech. 64 (2004) 925.

  34. Idem., ibid. 64 (2004) 935.

  35. AMERICAN SOCIETY OF TESTING AND MATERIALS, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials”, Annual Book of ASTM Standards, Designation: D5045-99, 1999.

  36. T. L. ANDERSON, “Fracture Mechanics: Fundamentals and Applications” (CRC Press, Boca Raton, FL, 1991).

  37. A. YASMIN, J.L. ABOT, and I.M. DANIEL, Scripta Materialia 49 (2003) 81.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zunjarrao, S.C., Sriraman, R. & Singh, R.P. Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites. J Mater Sci 41, 2219–2228 (2006). https://doi.org/10.1007/s10853-006-7179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-7179-2

Keywords

Navigation