Skip to main content
Log in

Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part IThe deformation of three aluminum alloys at 473 K to 833 K

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Constant-load indentation tests were performed on wrought-2024, P/M-2024, and wrought-1100 aluminum alloys to assess the capability of the microindentation testing technique for measuring the high-temperature deformation rate controlling parameters of these alloys. The three alloys all display threshold indentation stress σth below which the indentation strain rate εind approaches zero. The nominal inter-obstacle spacing, ℓ*, calculated from σth, increases with temperature in a way that is consistent with the known temperature dependence of the inter-particle spacing and dislocation cell size. The measured activation energy ΔGo of ɛind increases with temperature but remains within the range that is typical of deformation that occurs by dislocation glide limited by weak particles or dislocation/dislocation interactions. The three alloys tested show different trends of ΔGo versus ℓ* and the trends are consistent with the known temperature dependence of the obstacles to dislocation glide.

This study demonstrates that high-temperature indentation tests are sufficiently precise to detect changes in the operative deformation parameters between different alloys of the same general composition. This lays the groundwork for the use of this technique as a general tool for studying the local high-temperature deformation of a wide range of metal-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. POMEY, A. ROYEZ and J. P. GEORGES, Rev. Met. 56 (1959) 215.

  2. T. O. MULHEARN and D. TABOR, J. Inst. Metals 89 (1960) 7.

    CAS  Google Scholar 

  3. A. G. ATKINS, A. SILVÉRIO and D. TABOR, J. Inst. Met. 94 (1966) 369.

  4. C. J. FAIRBANKS, R. S. POLVANI, S. M. WEIDERHORN, B. J. HOCKEY and B. R. LAWN, J. Mater. Sci. Lett. 1 (1982) 391.

    Article  CAS  Google Scholar 

  5. P. M. SARGENT and M. F. ASHBY, Mater. Sci. Technol. 8 (1992) 594

  6. W. B. LI, J. L. HENSHALL, R. M. HOOPER and K. E. EASTERLING, Acta Metall. Mater. 39 (1991) 3099.

    Article  CAS  Google Scholar 

  7. B. N. LUCAS and W. C. OLIVER, Metall. Mater. Trans. A 30 (1999) 601.

    Article  Google Scholar 

  8. M. J. MAYO and W. D. NIX, Acta Metall. 36 (1988) 2183.

  9. T. P. WEIHS and J. B. PETHICA, Mater. Res. Soc. Symp. Proc. 239 (1992) 325.

  10. V. RAMAN and R. BERRICHE, J. Mater. Res. 7 (1992) 627.

  11. B. N. LUCAS and W. C. OLIVER, Mater. Res. Soc. Symp. Proc. 239 (1992) 337.

  12. S. P. BAKER, T. W. BARBEE and W. D. NIX, Mater. Res. Soc. Symp. Proc. 239 (1992) 319.

  13. G. FENG and A. H. W. NGAN, Scripta Mater. 45 (2001) 971.

  14. H. J. FROST and M. F. ASHBY, “Deformation-Mechanism Maps” (Pergamon Press, Oxford, 1982) p.21.

  15. S. SAIMOTO, B. J. DIAK and K. R. UPADHYAYA, Mater. Sci. Engng. A234 – 236 (1997) 1015.

  16. B. J. DK and S. SAIMOTO, Mater. Sci. Engng. A319 – 321 (2001) 909.

  17. A. A. ELMUSTAFA and D. S. STONE, J. Mech. Phys. Solids 51 (2003) 357.

    Article  CAS  Google Scholar 

  18. R. J. KLASSEN, B. J. DIAK and S. SAIMOTO, Mater. Sci. Engng. A387 - 389 (2004) 297.

  19. R. N. SARAF, M.E. Sc “Creep Behaviour of Al-Based Composites Made By The P/M Technique” Thesis University of Western Ontario, London Canada, 2002.

  20. J. F. SMITH and S. ZHANG, Surf. Engng. 16 (2000) 143.

  21. B. D. BEAKE and J. F. SMITH, Philos. Mag. A8 (2002) 2179.

  22. B. D. BEAKE, S. R. GOODES, J. F. SMITH and Z. METALLKD 7 (2003) 798.

    Article  Google Scholar 

  23. J. C. GIBELING and W. D. NIX, Mater. Sci. Engng. 45 (1980) 123.

    Article  Google Scholar 

  24. F. A. MOHAMED, Mater. Sci. Engng. A245 (1998) 242.

  25. S. R. NUTT and R. W. CARPENTER, Mater. Sci. Eng. 75 (1985) 169.

    Article  CAS  Google Scholar 

  26. M. STRANGWOOD, C. A. HIPPSLEY and J. J. LEWANDOWSKI, Scripta Metal. et Mater. 24 (1990) 1483.

  27. W.-J. KIM and O. D. SHERBY, Acta Mater. 48 (2000) 1763.

  28. W.-J. KIM, D.-W. KUM and H.-G. JEONG, J. Mater. Res. 16 (2001) 2429.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhakhri, V., Klassen, R.J. Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part IThe deformation of three aluminum alloys at 473 K to 833 K. J Mater Sci 41, 2259–2270 (2006). https://doi.org/10.1007/s10853-006-7174-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-7174-7

Keywords

Navigation