Advertisement

Journal of Materials Science

, Volume 41, Issue 8, pp 2291–2300 | Cite as

Mechanical properties of talc- and CaCO3-reinforced high-crystallinity polypropylene composites

  • J.-I. Weon
  • H.-J. Sue
Article

Abstract

Toughening mechanisms and mechanical properties of two high-crystallinity polypropylene (hcPP)-based composite systems, hcPP/talc and hcPP/CaCO3, are investigated. Significant improvement in tensile modulus is observed in the PP/talc composite, but only a moderate improvement is found for hcPP/CaCO3. The introduction of CaCO3 nanoparticles to hcPP helps nucleate a measurable amount of β-phase crystals and results in a significant drop in crystallization temperature, suggesting a possible retardation of hcPP crystallization. In addition, the hcPP/CaCO3 nanocomposite shows more pronounced damping characteristics than that of hcPP/talc, throughout the temperature range studied. A detailed investigation of fracture mechanisms suggests that well-dispersed, highly oriented talc particles cause embrittlement of hcPP. Only when the crack extends toward the edges of the specimen will the crack deflection/bifurcation and microcracking mechanisms initiate. In the case of hcPP/CaCO3, the CaCO3 nanoparticles help trigger massive crazing and shear yielding if the testing speed is in quasi-static. The presence of β-phase crystals around the CaCO3 particles could facilitate the formation of crazes throughout the hcPP matrix. Approaches for toughening hcPP are discussed.

Keywords

Polymer Mechanical Property Crystallization Polypropylene Fracture Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. TABTIANG and R. VENABLES, Eur. Polym. J. 36 (2000) 137.Google Scholar
  2. 2.
    C. A. WAH, L. CHOONG and G. S. NEON, ibid. 36 (2000) 789.Google Scholar
  3. 3.
    K. PREMPHET and P. HORANOT, Polymer 41 (2000) 9283.Google Scholar
  4. 4.
    Z. BARTCZAK, A. S. ARGON, R. E. COHEN and M. WEINBERG, Polymer 40 (1999) 2347.Google Scholar
  5. 5.
    J. Z. LIANG and R. K. Y. LI, J. Appl. Polym. Sci. 77 (2000) 409.Google Scholar
  6. 6.
    K. MITSUISHI, S. KODAMA and H. KAWASAKI, Polym. Engng. Sci. 25 (1985)1069.Google Scholar
  7. 7.
    G.-X. WEI and H.-J. SUE, J. Mat. Sci. 35 (2000) 555.Google Scholar
  8. 8.
    J. JANCAR and A.T. DIBENEDETTO, Polym. Engng. Sci. 33 (1993) 559.Google Scholar
  9. 9.
    Z. DEMJEN, B. PUKANSZKY and N. JOZSEF, Composites Part A 29 (1998) 323.Google Scholar
  10. 10.
    R. ROTHON, in “Particulate-Filled Polymer Composites” (Wiley, New York, NY, 1995).Google Scholar
  11. 11.
    C. CHAN, J. WU, J. LI and Y. CHEUNG, Polymer 43 (2002) 2981.Google Scholar
  12. 12.
    M. SUMITA, T. SHIZUMA, K. MIYASAKA and K. ISHIKAWA, J. Macromol. Sci. Phys. B22 (1983) 601.Google Scholar
  13. 13.
    M. SUMITA, T. TSUKURMO, K. MIYASAKA and K. ISHIKAWA, J. Mater. Sci. 18 (1983) 1758.Google Scholar
  14. 14.
    M. FUJIYAMA and T. WAKINO, J. Appl. Polym. Sci. 42 (1991) 2749.Google Scholar
  15. 15.
    G.-X. WEI, H.-J. SUE, J. CHU, C. HUANG and K. GONG, J. Mater. Sci. 35 (2000) 555.Google Scholar
  16. 16.
    H.-J. SUE, J. Mater. Sci. 27 (1992) 3098.Google Scholar
  17. 17.
    G.-X. WEI and H.-J. SUE, Polym. Eng. Sci. 40 (2000) 1979.Google Scholar
  18. 18.
    Y. LI, G.-X. WEI and H.-J. SUE, J. Mater. Sci. 37 (2002) 2447.Google Scholar
  19. 19.
    G.-X. WEI, H.-J. SUE, J. CHU, C. HUANG and K. GONG, Polymer 41 (2000) 2947.Google Scholar
  20. 20.
    Z. BARTCTCZAK, J. Macromol. Sci. Part B: Phys. B41 (2002) 1205.Google Scholar
  21. 21.
    Y. S. THIO, A. S. ARGON, R. E. COHEN and M. WEINBERG, Polymer 43 (2002) 3661.Google Scholar
  22. 22.
    W. C. J. GAYMANS, C. WESTZAAN, J. HUETINK and R. J. GAYMANS, ibid. 44 (2003) 261.Google Scholar
  23. 23.
    J.-I. WEON, K. T. GAM, W. J. BOO, H.-J. SUE and C.-M. CHAN, J. Appl. Polym. Sci. accepted.Google Scholar
  24. 24.
    Q. X. ZHANG, Z. Z. YU, X. L. XIEA and Y. W. MAI, Polymer 45 (2004) 5985.Google Scholar
  25. 25.
    A. S. ARGON and R. E. COHEN, Polymer 44 (2003) 6013.Google Scholar
  26. 26.
    Q. FU and G. H. WANG, Polym. Eng. Sci. 32 (1992) 94.Google Scholar
  27. 27.
    Z. BARTCZAK, A. S. ARGON, R. E. COHEN and M. WEINBERG, Polymer 40 (1999) 2331.Google Scholar
  28. 28.
    H.-J. SUE and A. F. YEE, J. Mater. Sci. 28 (1993) 2915.Google Scholar
  29. 29.
    H.-J. SUE, Polym. Eng. Sci. 31 (1991) 270.Google Scholar
  30. 30.
    H.-J. SUE and A. F. YEE, J. Mater. Sci. 24 (1989) 1447.Google Scholar
  31. 31.
    J. LU, G.-X. WEI, H.-J. SUE and J. CHU, J. Appl. Polym. Sci. 76 (2000) 311.Google Scholar
  32. 32.
    J. LU, C. K. Y. LI, G.-X. WEI and H.-J. SUE, J. Mater. Sci. 35 (2000) 271.Google Scholar
  33. 33.
    G.-X. WEI and H.-J. SUE, J. Appl. Polym. Sci. 74 (1999) 2539.Google Scholar
  34. 34.
    W. C. J. ZUIDERDUIN, C. WESTZAAN, J. HUETINK and R. J. GAYMANS, Polymer 44 (2003) 261.Google Scholar
  35. 35.
    T. KOWALESKI and A. GALESKI, J. Appl. Polym. Sci. 32 (1986) 2919.Google Scholar
  36. 36.
    R. GRECO and F. COPPOLA, Plast. Rubber. Process. Appl. 6 (1986) 35.Google Scholar
  37. 37.
    F. H. J. MAURER, H. M. SCHOFFELEERS, R. KOSFELD and T. UHLENBROICH, Progress in Science and Engineering of Composites. Tokyo: ICCM-IV; 1982, p. 803.Google Scholar
  38. 38.
    J. J. LIU, X. F. WEI and Q. P. GUO, J. Appl. Polym. Sci. 41 (1990) 2829.Google Scholar
  39. 39.
    P. M. MCGENITY, J. J. HOOPER, C. D. PAYNTER, A. M. RILEY, C. NUTBEEM, N. J. ELTON and J. M. ADAMS, Polymer 33 (1992) 5215.Google Scholar
  40. 40.
    R. GRECO and G.RAGOSTA, J. Mater. Sci. 23 (1988) 4171.Google Scholar
  41. 41.
    H. G. OLF and A. PETERLIN, J. Polym. Sci. Polym. Phys. 12 (1974) 2209.Google Scholar
  42. 42.
    S. C. TJONG, J. S. SHEN and R. K. Y. LI, Polymer 37 (1996) 2309.Google Scholar
  43. 43.
    S. C. TJONG, R. K. Y. LI and T. CHEUNG, Polym. Eng. Sci. 37 (1997) 166.Google Scholar
  44. 44.
    T. LABOUR, G. VIGIER, R. SEGUELA, C. GAUTHIER, G. ORANGE and Y. BOMAL, J. Polym. Sci. Part B: Polym. Phys. 40 (2002) 31.Google Scholar
  45. 45.
    T. LABOUR, L. FERRY, C. GAUTHIER, P. HAJJI and G. VIGIER, J. Appl. Polym. Sci. 74 (1999) 195.Google Scholar
  46. 46.
    Z. WU, C. ZHOU and N. ZHU, Poly. Test. 21 (2002) 479.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Polymer Technology Center, Department of Mechanical EngineeringTexas A & M UniversityCollege StationUSA

Personalised recommendations