Skip to main content
Log in

Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous scaffold structures are used in tissue engineering to provide structural guidance for regenerating tissues. The use of carbon dioxide (CO2) to create such scaffolds has received some attention in the past but many researchers believe that although CO2 processing of polymers can lead to porous scaffolds there is limited interconnectivity between the pores. In this study, highly porous (greater than 85%) and well interconnected scaffolds were obtained in which the size, distribution and number of pores could be controlled. This control was achieved by altering the rate of venting from polymer discs saturated with CO2 under modest temperature and pressure. The polymer used is a blend of poly (ethyl methacrylate) and tetrahydrofurfuryl methacrylate (PEMA/THFMA). This polymer system has shown promise for potential applications in cartilage repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. CHEN, T. USHIDA and T. TATEISHI, Macromol. Biosci. 2 (2002) 67.

    Article  CAS  Google Scholar 

  2. K. F. LEONG, C. M. CHEAH and C. K. CHUA, Biomaterials 24 (2003) 2363.

    Article  CAS  Google Scholar 

  3. Q. HUANG, D. PAUL and B. SEIBIG, Membrane Technol. 140 (2001) 6.

    Article  Google Scholar 

  4. R. A. QUIRK, R. M. FRANCE, K. M. SHAKESHEFF and S. M. HOWDLE, Curr. Opin. Solid State Mater. Sci. 8 (2004) 313.

    Article  CAS  Google Scholar 

  5. M. WEBER, L. RUSSELL and P. DEBENEDETTI, J. Supercritical Fluids 23 (2002) 65.

    Article  CAS  Google Scholar 

  6. M. A. MCHUGH and V. J. KRUKONIS, Supercritical Fluid Extraction: Principles and Practice (Butterworth-Heinemann, Boston, 1994), p 512.

    Google Scholar 

  7. A. I. COOPER, Adv. Mater. 13 (2001) 1.

    Article  Google Scholar 

  8. H. M. WOODS, M. M. C. G. SILVA, C. NOUVEL, K. M. SHAKESHEFF and S. M. HOWDLE, J. Mater. Chem. 14 (2004) 1663.

    Article  CAS  Google Scholar 

  9. D. J. MOONEY, D. F. BALDWIN, N. P. SUH, J. P. VACANTI and R. LANGER, Biomaterials 17 (1996) 1417.

    Article  CAS  Google Scholar 

  10. S. M. HOWDLE, et al. Chem. Commun. 1 (2001) 109.

    Article  Google Scholar 

  11. S. G. KAZARIAN, Polym. Sci. 42 (2000).

    Google Scholar 

  12. D. L. TOMASKO, et al. Ind. Eng. Chem. 42 (2004) 6431.

    Article  Google Scholar 

  13. L. D. HARRIS, B.-S. KIM and D. J. MOONEY, J. Biomed. Mater. Res. 42 (1998) 396.

    Article  CAS  Google Scholar 

  14. S. K. GOEL and E. J. BECKMAN, Polym. Eng. Sci. 34 (1994) 1137.

    Article  CAS  Google Scholar 

  15. Polym. Eng. Sci.., 34 (1994) 1148.

    Article  CAS  Google Scholar 

  16. C. B. PARK, D. F. BALDWIN and N. P. SUH, Polym. Eng. Sci.., 35 (1995) 432.

    Article  CAS  Google Scholar 

  17. S. DOWNES, R. S. ARCHER, M. V. KAYSER, M. P. PATEL and M. BRADEN, J. Mater. Sci.: Mater. Med. (1994) 88.

  18. N. REISSIS, S. DOWNES, M. KAYSER, D. LEE and G. A. BENTLEY, J. Mater. Sci.: Mater. Med., 5 (1994) 793.

    CAS  Google Scholar 

  19. J. Mater. Sci.: Mater. Med., 5 (1994) 402.

    Google Scholar 

  20. R. M. SAWTELL, S. DOWNES and M. V. KAYSER, J. Mater. Sci.: Mater. Med., 6 (1995) 676.

    CAS  Google Scholar 

  21. R. M. SAWTELL, M. V. KAYSER and S. DOWNES, Cells Mater. 5 (1995) 63.

    CAS  Google Scholar 

  22. R. M. WYRE and S. DOWNES, Biomaterials 21 (2000) 335.

    Article  CAS  Google Scholar 

  23. J. J. A. BARRY, H. S. GIDDA, C. A. SCOTCHFORD and S. M. HOWDLE, Biomaterials. 25 (2004) 3559.

    Article  CAS  Google Scholar 

  24. C. D. MCFARLAND, et al., J. Biomed. Mater. Res. 44 (1999) 1.

    Article  CAS  Google Scholar 

  25. A. TAMPIERI, G. CELOTTI, S. SPRIO, A. DELCOGLIANO and S. FRANZESE, Biomaterials 22 (2001) 1365.

    Article  CAS  Google Scholar 

  26. Y. DAUSSE, et al., Osteoarthritis Cartilage 11 (2003) 16.

    Article  CAS  Google Scholar 

  27. T. HILDEBRAND and P. RUEGSEGGER, J. Microsc. 185 (1997) 67.

    Article  Google Scholar 

  28. T. HILDEBRAND, A. LAIB, R. MULLER, J. DEQUEKER and P. RUEGSEGGER, J. Bone and Mineral Res. 14 (1999) 1167.

    Article  CAS  Google Scholar 

  29. A. I. COOPER, J. Mater. Chem. 10 (2000) 207.

    Article  CAS  Google Scholar 

  30. K. A. ARORA, A. J. LESSER and T. J. MCCARTHY, Macromolecules 31 (1998) 4614.

    Article  CAS  Google Scholar 

  31. S. H. ALAVI, B. K. GOGOI, M. KHAN, B. J. BOWMAN and S. S. H. RIZVI, Food Res. Int. 32 (1999) 107.

    Article  CAS  Google Scholar 

  32. M. C. G. S. SILVA, K. M. SHAKESHEFF and S. M. HOWDLE, Polymer scaffolds for cartilage engineering using supercritical fluids. in UKSB Conf. Proc. (Northern Ireland, 2003).

  33. L. N. NIKITIN, et al., Macromol 35 (2002) 934.

    Article  CAS  Google Scholar 

  34. C. A. LEóN Y LEóN, Adv. Colloid and Interface Sci. 76-77 (1998) 341.

    Article  Google Scholar 

  35. I. V. YANNAS, E. LEE, D. P. ORGILL, E. M. SKRABUT and G. F. MURPHY, Proc. Natl. Acad. Sci. 86 (1989) p. 933.

    Article  CAS  Google Scholar 

  36. B. D. BOYAN, T. W. HUMBERT, D. D. DEAN and Z. SCHWARTZ, Biomater. 17 (1996) 137.

    Article  CAS  Google Scholar 

  37. F. A. L. DULLIEN, “Porous Media: Fluid Transport and Pore Structure” (Academic Press, San Diego, 1992), p. 574.

    Google Scholar 

  38. P. W. HUI, P. C. LEUNG and A. SHER, J. Biomech. 29 (1996) 123.

    Article  CAS  Google Scholar 

  39. M. J. GRIMM and J. L. WILLIAMS, J. Biomech.. 30 (1997) 743.

    Article  CAS  Google Scholar 

  40. J. SOHIER, R. E. HAAN, K. DE GROOT and J. M. BEZEMER, J. Control. Release 87 (2003) 57.

    Article  CAS  Google Scholar 

  41. S. LI, J. R. DE WIJN, J. LI, P. LAYROLLE and K. DE GROOT, Tissue Eng. 9 (2003) 535.

    Article  CAS  Google Scholar 

  42. G. BAROUD, J. Z. WU, M. BOHNER, S. SPONAGEL and T. STEFFEN, Med. Eng. Phys. 25 (2003) 283.

    Article  CAS  Google Scholar 

  43. L. J. GIBSON and M. F. ASHBY, “Cellular Solids: Structure and Properties” (Cambridge University Press, Cambridge, 1997).

    Book  Google Scholar 

  44. A. S. P. LIN, T. H. BARROWS, S. H. CARTMELL and R. E. Guldberg, Biomater. 24 (2003) 481.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Howdle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, J.J.A., Silva, M.M.C.G., Cartmell, S.H. et al. Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity. J Mater Sci 41, 4197–4204 (2006). https://doi.org/10.1007/s10853-006-7023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-7023-8

Keywords

Navigation