Advertisement

Journal of Materials Science

, Volume 41, Issue 13, pp 4169–4177 | Cite as

Effect of thermal conductivity on reaction front propagation during combustion synthesis of intermetalics

  • M. Ballas
  • H. Song
  • O. J. Ilegbusi
Article

Abstract

A mathematical model is developed to investigate the effect of thermal conductivity on the combustion synthesis of intermetallics. The governing equations are solved using a high-order-implicit numerical scheme capable of accommodating the steep spatial and temporal gradients of properties. A parametric study is then performed to elucidate reaction characteristics (propagation type, steady-state propagation velocity, peak temperature, etc.) in terms of the thermal conductivity ratio, κ=k p /kr. The predicted results appear plausible and consistent with the trends presented in the available literature.

Keywords

Reaction Zone Effective Thermal Conductivity Combustion Synthesis Reaction Front Product Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. C. YI and J. J. MOORE, J. Miner. Met. Mater. Soc. 42 (8) (1990) 31.Google Scholar
  2. 2.
    Y. LU and M. HIROHASHI, J. Mater. Sci. Lett. 18 (5) (1999) 395.Google Scholar
  3. 3.
    B. Y. LI, L. J. RONG, Y. Y. LI and V. E. GJUNTER, J. Mater. Res. 15 (1) (2000) 10.Google Scholar
  4. 4.
    S. B. MARGOLIS, Metallurg. Trans. 23A (1) (1992) 15.Google Scholar
  5. 5.
    Y. ZHANG and G. C. STANGLE, J. Mater. Res. 9 (10) (1994) 2592.Google Scholar
  6. 6.
    J. PUSZYNSKI, V. K. JAYARAMAN and V. HLAVACEK, Int. J. Heat Mass Transf. 28 (6) (1985) 1237.Google Scholar
  7. 7.
    L. RAO, P. YU and R. B. KANER, J. Mater. Synth. Proc. 2 (6) (1994) 343.Google Scholar
  8. 8.
    H. C. YI and J. J. MOORE, J. Mater. Sci. 24 (10) (1989) 3449.Google Scholar
  9. 9.
    J. Mater. Sci. 3456.Google Scholar
  10. 10.
    A. H. ADVANI, N. N. THADHANI, H. A. GREBE, R. HEAPS, C. COFFIN and T. KOTTKE, J. Mater. Sci. 27 (1992) 3309.Google Scholar
  11. 11.
    A. K. BHATTACHARYA, J. Mater. Sci. 27 (6) (1992) 1521.Google Scholar
  12. 12.
    A. K. BHATTACHARYA, J. Am. Ceramic Soc. 74 (9) (1991) 2113.Google Scholar
  13. 13.
    M. G. LAKSHMIKANTHA, A. BHATTACHARYA and J. A. SEKHAR, Metallurg. Trans. 23A (1) (1992) 23.Google Scholar
  14. 14.
    J. PUSZYNSKI, J. DEGREVE and V. HLAVACEK, Ind. Eng. Chem. Res. 26 (7) (1987) 1424.Google Scholar
  15. 15.
    D. M. MATSON and Z. A. MUNIR, Mater. Sci. Eng. 153A (1/2) (1992) 700.Google Scholar
  16. 16.
    Y. ZHANG and G. C. STANGLE, J. Mater. Res. 9 (10) (1994) 2605.Google Scholar
  17. 17.
    T. AKIYAMA, H. ISOGAI and J. I. YAGI, AIChE J. 44 (3) (1998) 695.Google Scholar
  18. 18.
    K. S. VECCHIO, J. C. LASALVIA, M. A. MEYERS and G. T. GRAY III, Metallurg. Trans. 23A (1) (1992) 87.Google Scholar
  19. 19.
    S. K. LELE, J. Comput. Phys. 103 (1) (1992) 16.Google Scholar
  20. 20.
    M. CIMENT, S. H. LEVENTHAL and B. C. WEINBERG, J. Comput. Phys. 28 (2) (1978) 135.Google Scholar
  21. 21.
    R. S. HIRSH, J. Comput. Phys. 19 (1) (1975) 90.Google Scholar
  22. 22.
    Z. A. MUNIR, Metallurg. Trans. 23A (1) (1992) 7.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of Mechanical, Materials and Aerospace EngineeringUniversity of Central FloridaOrlando

Personalised recommendations