Advertisement

Journal of Materials Science

, Volume 41, Issue 10, pp 2965–2969 | Cite as

Electrophoretic deposition of colloidal crystals assisted by hydrodynamic flows

  • M. Yoldi
  • W. González-ViñAs
  • M. C. Arcos
  • R. Sirera
Article

Abstract

Latex-based colloidal crystals have been grown by electrophoretic deposition. The deposition has been assisted by hydrodynamic von Kármán-like flows, which lead to quantitative improvements. It has been studied the influence of applied voltage, deposition time and flow rate on the number of deposited layers and on the mean domain size. The samples were studied with microscopy and precision weight measurement. It has been found that there is a critical time after which the deposition mechanism changes, and the behavior of the system before and after this critical time is considered. The mean domain size and the deposition time were reduced to non-dimensional forms which show the collapse of the data for different applied voltages and flow rates into one curve.

Keywords

Mesoscopic colloidal crystallization electrophoresis patterning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. J. SANDERS, Nature 24 (1964) 1151.Google Scholar
  2. 2.
    Idem. Acta Crystallogr. 24 (1968) 427.CrossRefGoogle Scholar
  3. 3.
    Y. A. VLASOV, V. N. ASTRATOV, A. V. BARISHEV, A. A. KAPLYANSKII, O. Z. KARIMOV and M. F. LIMONOV, Phys. Rev. E61 (2000) 5784.Google Scholar
  4. 4.
    A. H. CARDOSO, C. A. P. LEITE, M. R. D. ZANIQUELLI and F. GALEMBECK, Colloids Surfaces A 144 (1998) 207.CrossRefGoogle Scholar
  5. 5.
    F. KOPNOV, V. LISTSMAN and D. DAVIDOV, Synthetic Met. 137 (2003) 993.CrossRefGoogle Scholar
  6. 6.
    E. W. SEELIG, B. TANG, A. YAMILOV, H. CAO and R. P. H. CHANG, Mater. Chem. Phys. 80 (2003) 257.CrossRefGoogle Scholar
  7. 7.
    K. S. MAYYA and M. SASTRY, Langmuir 15 (1995) 1902.CrossRefGoogle Scholar
  8. 8.
    A. STEIN and R. C. SCHRÖDEN, Curr. Opin. Solid St. M. 5 (2001) 553.CrossRefGoogle Scholar
  9. 9.
    L. M. GOLDENBERG, J. WAGNER, J. STUMPE, B. R. PAULKE and E. GÖRNITZ, Mater. Sci. Eng. 22 (2000) 405.Google Scholar
  10. 10.
    Idem. Langmuir 18 (2002) 3319.CrossRefGoogle Scholar
  11. 11.
    P. NOZAR, C. DIONIGI, A. MIGLIORI, G. CALESTANI and L. CADEMARTIRI, Synthetic Met. 139 (2003) 667.CrossRefGoogle Scholar
  12. 12.
    R. M. AMOS, J. G. RARITY, P. R. TAPSTER, T. J. SHEPERD and S. C. KITSON, Phys. Rev. E61 (2000) 2929.Google Scholar
  13. 13.
    O. VICKREVA, O. KALININA and E. KUMACHEVA, Adv. Mater. 12 (2000) 110.CrossRefGoogle Scholar
  14. 14.
    A. L. ROGACH, N. A. KOTOV, D. S. KOKTYSH, J. W. OSTRANDER and G. A. RAGOISHA, Cham. Mater. 12 (2000) 2721.CrossRefGoogle Scholar
  15. 15.
    J. P. HOOGENBOOM, A. YETHIRAJ, A. K. VAN LANGEN-SUURLING, J. ROMIJN and A. VAN BLAADERN, Phys. Rev. Lett. 89 (25) (2002) 256104-1.CrossRefGoogle Scholar
  16. 16.
    A. YETHIRAJ, J. H. J. THIJSSEN, A. WOUTERSE and A. VAN BLAADERN, Adv. Mater. 17 (7) (2004) 596.CrossRefGoogle Scholar
  17. 17.
    W. D. RISTENPART, L. A. AKSAY and D. A. SAVILLE, Phys. Rev. E69 (2004) 021405.Google Scholar
  18. 18.
    P. J. ZANDBERGEN and D. DIJKSTRA, Annu. Rev. Fluid Mech. 19 (1987) 465.CrossRefGoogle Scholar
  19. 19.
    V. N. ASTRATOV, B. N. BOGOMOLOV, A. A. KAPLYANSKII, A. V. PROKOFIEV, L. A. SAMOILOVICH, S. M. SAMOILOVICH and Y. A. VLASOV, Nuovo Cimento Soc. ltd. Fis. D 17 (1995) 1349.Google Scholar
  20. 20.
    O. D. VELEV, T. A. JEDE, R. F. LOBO and A. M. LENHOFF, Nature 389 (1997) 447.CrossRefGoogle Scholar
  21. 21.
    K. BUSCH and S. JOHN, Phys. Rev. E58 (1998) 3896.Google Scholar
  22. 22.
    A. A. ZAKHIDOV, R. H. BAUGHMAN, Z. IGBAL, C. GUI, I. KHAYRULLIN, S. O. SANTAS, J. MARTI and V. G. RALCHENKO, Science 282 (1998) 897.CrossRefGoogle Scholar
  23. 23.
    M. HOLGADO, F. GARCÍA-SANTAMARÍA, A. BLANCO, M. IBISATE, A. CIN-TAS, H. MÍGUEZ, C. J. SERNA, C. MOLPECERES, J. REQUENA, C. MIFSUD, F. MESSEGUER and C. LÓPEZ, Langmuir 15 (1999) 4701.CrossRefGoogle Scholar
  24. 24.
    A. BLANCO, E. CHOMSKI, S. GRABTCHAK, M. IBISATE, S. JOHN, S. W. LEONARD, C. LÓPEZ, F. MESSEGUER, H. MÍGUEZ, J. P. MONDIA, G. A. OZIN, O. TOADER and H. M. DRIEL, Nature 405 (2000) 437.CrossRefGoogle Scholar
  25. 25.
    Y. A. VLASOV, X. Z. BO, J. C. STURM and D. J. NORRIS, Nature 414 (2001) 289.CrossRefGoogle Scholar
  26. 26.
    V. L. ALEXEEV, S. DAS, D. N. FINEGOLD and S. A. ASHER, Clm. Chem. 50, 12 (2004) 2353.CrossRefGoogle Scholar
  27. 27.
    O. D. VELEV, E. W. KALER and A. M. LENHOFF, Science 287 (2000) 2240.CrossRefGoogle Scholar
  28. 28.
    O. D. VELEV and E. W. KALER, Adv. Mater. 12 (2000) 531.CrossRefGoogle Scholar
  29. 29.
    M. TRAU, D. A. SAVILLE and I. A. AKSAY, Science 272 (1996) 706.Google Scholar
  30. 30.
    Idem Langmuir 13 (1997) 6375.CrossRefGoogle Scholar
  31. 31.
    H. D. YARDS, J. NEWMAN and C. J. RADKE, Colloid Interf. Sci. 262 (2003) 442.CrossRefGoogle Scholar
  32. 32.
    S. TSUNEKAWA, Y. A. BARNAKOV, V. V. POBORCHII, S. M. SAMOILOVICH, A. KASUYA and Y. NISHINA, Microporous Mater. 8 (1996) 275.CrossRefGoogle Scholar
  33. 33.
    H. MÍGUEZ, F. MESSEGUER, C. LÓPEZ, A. MIFSUD, J. S. MOYA and L. VÓZQUEZ, Langmuir 13 (1997) 6009.CrossRefGoogle Scholar
  34. 34.
    A. VAN BLAADEREN, R. RUEL and P. WILTZIUS, Nature 385 (1997) 321.CrossRefGoogle Scholar
  35. 35.
    A. D. BRUCE, N. B. WILDING and G. J. ACKLAND, Phys. Rev. Lett. 79 (1997) 3002.CrossRefGoogle Scholar
  36. 36.
    A. V. PETUKHOV, I. P. DOLBNYA, D. G. A. L. AARTS and G. J. VROEGE, Phys. Rev. E69 (2004) 031405.Google Scholar
  37. 37.
    P. JIANG, J. F. BERTONE, K. S. HWANG and V. L. COLVIN, Chem. Mater. 11 (1999) 2132.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • M. Yoldi
    • 1
  • W. González-ViñAs
    • 1
  • M. C. Arcos
    • 2
  • R. Sirera
    • 2
  1. 1.Department of Physics and Applied MathematicsSpain
  2. 2.Department of Chemistry and Soil Science, Faculty of ScienceUniversity of NavarraPamplonaSpain

Personalised recommendations