Journal of Materials Science

, Volume 41, Issue 13, pp 4153–4158 | Cite as

Direct ink-jet printing and low temperature conversion of conductive silver patterns

  • P. J. Smith
  • D.-Y. Shin
  • J. E. Stringer
  • B. Derby
  • N. Reis


A drop-on-demand ink-jet printer has been used in the production of conductive silver tracks onto glass, polyimide, polytetrafluoroethylene, carbon and glass fibre reinforced epoxy substrates. Silver patterns were obtained from an organometallic solution by heat treatment at 150°C in air and were found to have resistivity values of 1.3 to 2 times the theoretical resisitivity of bulk silver. Printed track lateral resolution is a function of the ink/substrate wetting behaviour and a simple model is presented that relates track width to equilibrium contact angle. The influence of printing parameters and substrate surface properties on line quality is discussed.


Contact Angle Equilibrium Contact Angle Track Width Print Head Bulk Silver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. F. TENG and R. W. VEST, IEEE T. Compon. Hybr. 11 (1988) 291.CrossRefGoogle Scholar
  2. 2.
    K. F. TENG and R. W. VEST, IEEE T. Compon. Hybr. 10 (1987) 545.CrossRefGoogle Scholar
  3. 3.
    T. CUK, S. M. TROIAN, C. M. HONG and S. WAGNER, Appl. Phys. Lett. 77 (2000) 2063.CrossRefGoogle Scholar
  4. 4.
    S. MOLESA, D. R. REDINGER, D. C. HUANG and V. SUBRAMANIAN, Mat. Res. Soc. Symp. Proc. 769 (2003) H8.3.1.Google Scholar
  5. 5.
    T. KAYDANOVA, A. MIEDANER, C. CURTIS, J. PERKINS, J. ALLEMAN and D. GINLEY, in Proceedings of the National Centre for Photovoltaics and Solar Program Review Meeting (Denver, Colorado, March 2003).Google Scholar
  6. 6.
    D. R. LIDE (Eds.) in Handbook of Chemistry and Physics, 77th edn. (Boca Raton, CRC press, 1996) p. 12.Google Scholar
  7. 7.
    R. W. VEST, in Ceramic Films and Coatings Chapter 9, edited by J. B. Wachtman and R. A. Haber (William Andrew Publishing/Noyes, 1993) p. 303.Google Scholar
  8. 8.
    S. B. FULLER, E. J. WILHELM and J. M. JACOBSON, J. Microelectromech. S. 11(1) (2002) 54.CrossRefGoogle Scholar
  9. 9.
    J. B. SZCZECH, C. M. MEGARIDIS, D. R. GAMOTA and J. ZHANG, IEEE T. Electron. Pack. 25 (2002) 26.CrossRefGoogle Scholar
  10. 10.
    N. REIS, C. AINSLEY and B. DERBY, J. Appl. Phys. (in press).Google Scholar
  11. 11.
    R. D. DEEGAN, O. BAKAJIN, T. F. DUPONT, G. HUBER, S. R. NAGEL and T. A. WITTEN, Nature 389 (1997) 827.CrossRefGoogle Scholar
  12. 12.
    R. W. VEST, E. P. TWEEDELL and R. C. BUCHANAN, Int. J. Hybrid Microelectron. 6 (1983) 261.Google Scholar
  13. 13. (last accessed on the 16th February 2005).
  14. 14.
    J. F. DIJKSMAN, J. Fluid. Mech. 139 (1984) 173.CrossRefGoogle Scholar
  15. 15.
    N. REIS and B. DERBY, Mater. Res. Soc. Symp. Proc. 624 (2000) 65.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • P. J. Smith
    • 1
  • D.-Y. Shin
    • 1
  • J. E. Stringer
    • 1
  • B. Derby
    • 1
  • N. Reis
    • 2
  1. 1.School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.Institute Superior Tecnico—ICEMSLisbonPortugal

Personalised recommendations