Advertisement

Journal of Materials Science

, Volume 41, Issue 3, pp 779–792 | Cite as

Defect structure in GaN pyramids

  • Jeffrey K. Farrer
  • C. Barry Carter
Article

Abstract

High-quality GaN/AlN layers grown on (111) Si substrates have been used as the seeding layer for lateral epitactic overgrowth of GaN. The selective overgrowth was controlled by depositing a Si3N4 mask on the GaN seed layer. Growth of additional GaN resulted in the formation of GaN pyramids above the apertures in the patterned Si3N4 mask. Transmission electron microscopy showed that the GaN pyramids, the GaN seed layer, and the AlN buffer layer in the samples have the following epitactic relationship with respect to the silicon substrate: \([11\bar 20]_{{\rm GaN}} ||[11\bar 20]_{{\rm AIN}} ||[\bar 110]_{{\rm Si}} \) and \((0001)_{{\rm GaN}} ||(0001)_{{\rm AIN}} ||(111)_{{\rm Si}} \). The pyramids were found to consist of a defective core region and a nearly defect-free outer region. In the core of the pyramid (at, or above, the aperture in the mask), numerous dislocations thread through the pyramid perpendicular to the interface plane. Some of these threading dislocations, which originated from the GaN/AlN seed layer, bend abruptly through 90° at the edge of this core region. In the outer part of the GaN pyramid, the density of vertically propagating dislocations was much lower. Most of the dislocations in this region are closely parallel to the original (0001) substrate plane. The top few microns of material are found to be essentially defect-free. The growth mechanism of the GaN pyramids is discussed in light of this defect structure.

Keywords

Pyramid Core Region Burger Vector Interface Plane EBSD Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. STRITE and H. MORKOC, J. Vac. Sci. Tech. B 10 (1992) 1237.CrossRefGoogle Scholar
  2. 2.
    R. F. DAVIS, S. EINFELDT, E. A. PREBLE, A. M. ROSKOWSKI, Z. J. REITMEIER and P. Q. MIRAGLIA, Acta Mater. 51 (2003) 5961.CrossRefGoogle Scholar
  3. 3.
    A. MILLS, III-Vs Rev. 16 (2003) 38.CrossRefGoogle Scholar
  4. 4.
    I. MELNGAILIS, Proc. SPIE 5123 (2003) 231.CrossRefGoogle Scholar
  5. 5.
    Y. LUO, C. SUN, Z. HAO, Y. HAN, B. XIONG, W. GUO and T. WU, in “Proc. 6th Chinese Optoelectronics Symp.” (IEEE, Hong Kong, China, 2003) p. 11.Google Scholar
  6. 6.
    O. H. NAM, M. D. BREMSER, B. L. WARD, R. J. NEMANICH and R. F. DAVIS, Japan. J. Appl. Phys. 36 (1997) L532.CrossRefGoogle Scholar
  7. 7.
    W. YANG, S. A. MCPHERSON, Z. MAO, S. MCKERNAN and C. B. CARTER, J. Cryst. Growth 204 (1999) 270.CrossRefGoogle Scholar
  8. 8.
    S. NAKAMURA, M. SENOH, S. NAGAHAMA, N. IWASA, T. YAMADA, T. MATSUSHITA, H. KIYOKU, Y. SUGIMOTO, T. KOZAKI, H. UMEMOTO, M. SANO and K. CHOCHO, Japan. J. Appl. Phys. 36 (1997) L1568.CrossRefGoogle Scholar
  9. 9.
    A. USUI, H. SUNAKAWA, A. SAKAI and A. A. YAMAGUCHI, ibid. 36 (1997) L899.CrossRefGoogle Scholar
  10. 10.
    C. CHEN, J. YANG, H. WANG, J. ZHANG, V. ADIVARAHAN, M. GAEVSKI, E. KUOKSTIS, Z. GONG, M. SU and M. ASIF KHAN, Japan. J. Appl. Phys. (Lett.) 42 (2003) 640.CrossRefGoogle Scholar
  11. 11.
    J.-M. BETHOUX, P. VENNEGUES, F. NATALI, E. FELTIN, O. TOTTEREAU, G. NATAF, P. DE MIERRY and F. SEMOND, J. Appl. Phys. 94 (2003) 6499.CrossRefGoogle Scholar
  12. 12.
    C. H. KO, Y. K. SU, S. J. CHANG, T. Y. TSAI, T. M. KUAN, W. H. LAN, J. C. LIN, W. J. LIN, Y. T. CHERNG and J. B. WEBB, Mater. Chem. Phys. 82 (2003) 55.CrossRefGoogle Scholar
  13. 13.
    H. NAOI, M. NARUKAWA, H. MIYAKE and K. HIRAMATSU, J. Cryst. Growth 248 (2003) 573.CrossRefGoogle Scholar
  14. 14.
    F. WANG, R. ZHANG, X. Q. XIU, K. L. CHEN, S. L. GU, B. SHEN, Y. D. ZHENG and T. F. KUECH, Mater. Lett. 57 (2003) 1365.CrossRefGoogle Scholar
  15. 15.
    E. BAUSER, in “Atomic Mechanism in Semiconductor Liquid Phase Epitaxy,” edited by D. T. J. Hurtle, (Elsevier, 1994) Vol. B, p. 879.Google Scholar
  16. 16.
    D. D. RATHMAN, D. J. SILVERSMITH and J. A. BURNS, J. Electrochem. Soc. 129 (1982) 2303.CrossRefGoogle Scholar
  17. 17.
    T. NISHINAGA, T. NAKANO and S. ZHANG, Japan. J. Appl. Phys. 27 (1988) L964.CrossRefGoogle Scholar
  18. 18.
    B. Y. TSAUR, R. W. MCCLELLAND, J. C. C. FAN, R. P. GALE, J. P. SALERNO, B. A. VOJAK and C. O. BOZLER, Appl. Phys. Lett. 41 (1982) 347.CrossRefGoogle Scholar
  19. 19.
    N. H. CHO, C. B. CARTER, Z. ELGAT and D. K. WAGNER, Appl. Phys. Lett. 49 (1986) 29.CrossRefGoogle Scholar
  20. 20.
    S. NARITSUKA, T. NISHINAGA, M. TACHIKAWA and H. MORI, Japan. J. Appl. Phys. (Lett.) 34 (1995) 1432.CrossRefGoogle Scholar
  21. 21.
    H. ASAI, S. ADACHI, S. ANDO and K. OE, J. Appl. Phys. 55 (1984) 3868.CrossRefGoogle Scholar
  22. 22.
    A. G. BHUIYAN, A. HASHIMOTO and A. YAMAMOTO, ibid. 94 (2003) 2779.CrossRefGoogle Scholar
  23. 23.
    J. BRAULT, S. TANAKA, E. SARIGIANNIDOU, J.-L. ROUVIERE, B. DAUDIN, G. FEUILLET and H. NAKAGAWA, ibid. 93 (2003) 3108.CrossRefGoogle Scholar
  24. 24.
    L.-W. JI, Y. K. SU, S. J. CHANG, C. S. CHANG, L. W. WU, W. C. LAI, X. L. DU and H. CHEN, J. Cryst. Growth 263 (2004) 114.CrossRefGoogle Scholar
  25. 25.
    Y. K. SU, S. J. CHANG, L. W. JI, C. S. CHANG, L. W. WU, W. C. LAI, T. H. FANG and K. T. LAM, Semicond. Sci. Tech. 19 (2004) 389.CrossRefGoogle Scholar
  26. 26.
    T. FUKAI, S. ANDO and Y. K. FUKAI, Appl. Phys. Lett. 57 (1990) 1209.CrossRefGoogle Scholar
  27. 27.
    H. WANG, C. CHEN, Z. GONG, J. ZHANG, M. GAEVSKI, M. SU, J. YANG and M. A. KHAN, ibid. 84 (2004) 499.CrossRefGoogle Scholar
  28. 28.
    D. S. LI, H. CHEN, H. B. YU, H. Q. JIA, Q. HUANG and J. M. ZHOU, J. Cryst. Growth 267 (2004) 395.CrossRefGoogle Scholar
  29. 29.
    F. WU, M. D. CRAVEN, S.-H. LIM and J. S. SPECK, J. Appl. Phys. 94 (2003) 942.CrossRefGoogle Scholar
  30. 30.
    P. RUTERANA, B. BEAUMONT, P. GIBART and Y. MELNIK, MRS Internet J. Nitride Semicond. Res. 5S1 (2000) W2.5.Google Scholar
  31. 31.
    Y. P. HSU, S. J. CHANG, Y. K. SU, J. K. SHEU, C. T. LEE, T. C. WEN, L. W. WU, C. H. KUO, C. S. CHANG and S. C. SHEI, J. Cryst. Growth 261 (2004) 466.CrossRefGoogle Scholar
  32. 32.
    D. GOGOVA, A. KASIC, H. LARSSON, C. HEMMINGSSON, B. MONEMAR, F. TUOMISTO, K. SAARINEN, L. DOBOS, B. PECZ, P. GIBART and B. BEAUMONT, J. Appl. Phys. 96 (2004) 799.CrossRefGoogle Scholar
  33. 33.
    B. BEAUMONT and P. GIBART, Proc. SPIE 3725 (1999) 2.CrossRefGoogle Scholar
  34. 34.
    H. MIYAKE, R. TAKEUCHI, K. HIRAMATSU, H. NAOI, Y. IYECHIKA, T. MAEDA, T. RIEMANN, F. BERTRAM and J. CHRISTEN, Phys. Stat. Sol. (a) 194 (2002) 545.CrossRefGoogle Scholar
  35. 35.
    A. E. ROMANOV, P. FINI and J. S. SPECK, J. Appl. Phys. 93 (2003) 106.CrossRefGoogle Scholar
  36. 36.
    X. H. WU, P. FINI, E. J. TARSA, B. HEYING, S. KELLER, U. K. MUSHRA, S. P. DENBAARS and J. S. SPECK, J. Cryst. Growth 189/190 (1998) 231.CrossRefGoogle Scholar
  37. 37.
    J. K. FARRER and C. B. CARTER, Mat. Res. Soc. Symp. Proc. (Spring 2001) 673 (2001) P3.12.Google Scholar
  38. 38.
    S. TANAKA, Y. HONDA, N. KAMESHIRO, R. IWASAKI, N. SAWAKI, T. TANJI and M. ICHIHASHI, J. Cryst. Growth 260 (2004) 360.CrossRefGoogle Scholar
  39. 39.
    W. JU, D. A. GULINO and R. HIGGINS, ibid. 263 (2004) 30.CrossRefGoogle Scholar
  40. 40.
    E. FELTIN, B. BEAUMONT, P. VENNEGUES, M. VAILLE, P. GIBART, T. RIEMANN, J. CHRISTEN, L. DOBOS and B. PECZ, J. Appl. Phys. 93 (2003) 182.CrossRefGoogle Scholar
  41. 41.
    S. HAFFOUZ, A. GRZEGORCZYK, P. R. HAGEMAN, P. VENNEGUES, E. W. J. M. VAN DER DRIFT and P. K. LARSEN, J. Cryst. Growth 248 (2003) 568.CrossRefGoogle Scholar
  42. 42.
    A. DADGAR, M. POSCHENRIEDER, J. BLASING, O. CONTRERAS, F. BERTRAM, T. RIEMANN, A. REIHER, M. KUNZE, I. DAUMILLER, A. KRTSCHIL, A. DIEZ, A. KALUZA, A. MODLICH, M. KAMP, J. CHRISTEN, F. A. PONCE, E. KOHN and A. KROST, ibid. 248 (2003) 556.CrossRefGoogle Scholar
  43. 43.
    S. BIDNYK, B. D. LITTLE, Y. H. CHO, J. KRASINSKI, J. J. SONG, W. YANG and S. A. MCPHERSON, MRS Internet J. Nitride Semicond. Res. 4S1 (1999).Google Scholar
  44. 44.
    Z. MAO, MCKERNAN, C. B., CARTER, W. YANG and S. A. MCPHERSON, MRS Internet J. of Nitride Semicond. Res. 4S1, G3.13 (1999).Google Scholar
  45. 45.
    Z. MAO, M. T. JOHNSON and C. B. CARTER, Microsc. Microanal. 4 (1998) 628.Google Scholar
  46. 46.
    Z. MAO, S. MCKERNAN, C. B. CARTER, Y. W. and S. A. MCPHERSON, ibid. 5 (1999) 734.Google Scholar
  47. 47.
    O.-H. NAM, T. S. ZHELEVA, M. D. BREMSER and R. F. DAVIS, J. Electronic Mater. 27 (1998) 233.Google Scholar
  48. 48.
    B. MORAN, F. WU, A. E. ROMANOV, U. K. MISHRA, S. P. DENBAARS and J. S. SPECK, J. Cryst. Growth 273 (2004) 38.CrossRefGoogle Scholar
  49. 49.
    S. NAKAMURA, Japan. J. Appl. Phys. 30 (1991) L1705.CrossRefGoogle Scholar
  50. 50.
    S. YOSHIDA, S. MISAWA and S. GONDA, J. Vac. Sci. Tech. B 1 (1983) 250.CrossRefGoogle Scholar
  51. 51.
    I. AKASAKI, H. AMANO, Y. KOIDE, K. HIRAMATSU and N. SAWAKI, J. Cryst. Growth 98 (1989) 209.CrossRefGoogle Scholar
  52. 52.
    Y. OHBA and S. IIDA, Japan. J. Appl. Phys. (Lett.) 41 (2002) 615.CrossRefGoogle Scholar
  53. 53.
    N. N. MORGAN, Y. ZHIZHEN and X. YABOU, Mater. Sci. Eng. B B90 (2002) 201.CrossRefGoogle Scholar
  54. 54.
    S. BIDNYK, B. D. LITTLE, Y. H. CHO, J. KRASINSKI, J. J. SONG, W. YANG and S. A. MCPHERSON, Appl. Phys. Lett. 73 (1998) 2242.CrossRefGoogle Scholar
  55. 55.
    Y. ISHIDA, H. ISHIDA, K. KOHRA and H. ICHINOSE, Phil. Mag. A 42 (1980) 453.Google Scholar
  56. 56.
    D. B. WILLIAMS and C. B. CARTER, in “Transmission Electron Microscopy: A Textbook for Materials Science” (Plenum, 1996).Google Scholar
  57. 57.
    T. S. ZHELEVA, O.-H. NAM, M. D. BREMSER and R. F. DAVIS, Appl. Phys. Lett. 71 (1997) 2472.CrossRefGoogle Scholar
  58. 58.
    R. D. UNDERWOOD, D. KAPOLNEK, B. P. KELLER, S. KELLER, S. P. DENBAARS and U. K. MISHRA, Solid State Electron. 41 (1997) 243.CrossRefGoogle Scholar
  59. 59.
    M. T. JOHNSON, Z. MAO and C. B. CARTER, Mat. Res. Soc. Symp. Proc. (Fall 1997) 482 (1997) 405.Google Scholar
  60. 60.
    W. QIAN, M. SKOWRONSKI, M. D. GRAEF, K. DOVERSPIKE, L. B. ROWLAND and D. K. GASKILL, Appl. Phys. Lett. 66 (1995) 1252.CrossRefGoogle Scholar
  61. 61.
    A. SAKAI, H. SUNAKAWA and A. USUI, ibid. 71 (1997) 2259.CrossRefGoogle Scholar
  62. 62.
    X. W. WU, L. M. BROWN, D. KAPOLNEK, S. KELLER, B. KELLER, S. P. DENBAARS and J. S. SPECK, ibid. 80 (1996) 3228.CrossRefGoogle Scholar
  63. 63.
    J. P. HIRTH, and J. LOTHE, in “Theory of Dislocations” (McGraw-Hill Book Company, 1968).Google Scholar
  64. 64.
    M. M. NOWELL, S. I. WRIGHT and B. W. TRUE, in “SCANNING,” edited by R. P. Becker, (Washington D.C., 2004) p. 73.Google Scholar
  65. 65.
    S. D. LESTER, F. A. PONCE, M. G. CRAFORD and D. A. STEIGERWALD, Appl. Phys. Lett. 66 (1995) 1249.CrossRefGoogle Scholar
  66. 66.
    H. MARCHAND, J. P. IBBETSON, P. T. FINI, S. KELLER, S. P. DENBAARS, J. S. SPECK and U. K. MISHRA, J. Cryst. Growth 195 (1998) 328.CrossRefGoogle Scholar
  67. 67.
    X. J. NING, F. R. CHIEN, P. PIROUZ, J. W. YANG and M. A. KHAN, J. Mater. Res. 11 (1996) 580.Google Scholar
  68. 68.
    B. C. DE COOMAN and C. B. CARTER, Acta Met. 37 (1989) 2765.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Jeffrey K. Farrer
    • 1
  • C. Barry Carter
    • 2
  1. 1.Department of Physics and AstronomyBrigham Young UniversityProvo
  2. 2.Department of Ch. E. & Materials ScienceUniversity of MinnesotaMinneapolis

Personalised recommendations