Advertisement

Journal of Materials Science

, Volume 41, Issue 13, pp 4357–4364 | Cite as

Feasibility of three-dimensional macroporous scaffold using calcium phosphate glass and polyurethane sponge

  • Young-Sang Park
  • Kyoung-Nam Kim
  • Kwang-Mahn Kim
  • Seong-Ho Choi
  • Chong-Kwan Kim
  • Racquel Z. Legeros
  • Yong-Keun Lee
Article

Abstract

Tissue engineering presents an alternative approach to the repair of a damaged tissue by avoiding the need for a permanent implant made of an engineered artificial material. A suitable temporary scaffold material that exhibits adequate mechanical and biological properties is required to enable tissue regeneration by exploiting the body’s inherent repair mechanism, i.e. a regenerative allograft. Synthetic bioresorbable polymers have been attracting attention as tissue engineering scaffolds. However, a number of problems have been encountered such as inflammatory responses and lack of bioactivity. Another good candidate for a tissue engineering scaffold is the calcium phosphates because of their good biocompatibility and osteointegrative properties. Their slow biodegradation is still remains problem, especially for the filling of large bony defects. In this study, we investigated the fabrication method of a three-dimensional reticulated scaffold with interconnected pores of several hundred micrometers using calcium phosphate glass in the system of CaO-CaF2-P2O5-MgO-ZnO and a polyurethane sponge as a template. Calcium phosphate glass slurry was homogenously thick coated when the weight percentage of the calcium phosphate glass powder was 40% with 8 wt% of polyvinyl alcohol as a binder. Addition of 10 wt% dimethyl formamide as a drying control chemical additive into a slurry almost prevented the crack formation during drying. Sintering of the dried porous block at 850°C exhibited the densest microstructure as well as the entire elimination of the organic additives. Repeating the process significantly increased compressive strength of sintered porous body due to the thickening of the struts. To summarize, macroporous calcium phosphate glass can be fabricated with 500∼800 μm of pore size and a three-dimensionally interconnected open pore system. It is thought that this kind of biodegradable glass scaffold combined with osteogenic cells has potential to be studied further as a tissue-engineered bone substitute.

Keywords

Compressive Strength Sponge Calcium Phosphate Glass Powder Organic Additive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. NAUGHTON, W. R. TOLBERT and T. M. GRILLOT, Tissue Eng. 1 (1995) 211.Google Scholar
  2. 2.
    N. F. BISSADA and U. HANGORSKY, Dent Clin North Am. 24 (1980) 739.Google Scholar
  3. 3.
    A. MIZUTANI, T. FUJITA, S. WATANABE, K. SAK- AKIDA and Y. OKADA, Int Orthop. 14 (1990) 243.CrossRefGoogle Scholar
  4. 4.
    J. R. MOORE, T. W. PHILLIPS, A. J. WEILAND and M. A. RANDOLPH, J. Orthop. Res. 1 (1984) 352.CrossRefGoogle Scholar
  5. 5.
    J. T. MELLONIG, A. B. PREWETT and M. P. MOYER, J. Periodontol. 63 (1992) 979.Google Scholar
  6. 6.
    M. E. AICHELMANN-REIDY and R. A. YUKNA, Dent. Clin. North Am. 42 (1998) 491.Google Scholar
  7. 7.
    R. LANGER and J. VACANTI, Science 260 (1993) 920.Google Scholar
  8. 8.
    M. KELLOMAKI, H. NIIRANEN, K. PUUMANEN, N. ASHAMMAKHI, T. WARIS and P. TORMALA, Biomaterials 21 (2000) 2495.CrossRefGoogle Scholar
  9. 9.
    J. O. HOLLINGER and A. CHAUDHARI, Cells Mater. 2 (1992) 143.Google Scholar
  10. 10.
    D. W. HUTMACHER, T. SCHANTZ, I. ZEIN, K. W. NG, S. H. TEOH and K. C. TAN, J Biomed. Mater. Res. 55 (2001) 203.CrossRefGoogle Scholar
  11. 11.
    V. MAQUET and R. JEROME, Mater. Sci. Forum. 250 (1997) 115.CrossRefGoogle Scholar
  12. 12.
    C. M. AGARWAL and R. B. RAY, J. Biomed. Mater. Res. 55 (2001) 141.CrossRefGoogle Scholar
  13. 13.
    H. SCHLIEPHAKE, F. W. NEUKAM, D. HUTMACHER and J. BECKER, J. Oral. Maxillofac. Surg. 52 (1994) 57.CrossRefGoogle Scholar
  14. 14.
    K. KURASHINA, H. KURITA, Q. WU, A. OHTSUKA and H. KOBAYASHI, Biomaterials 23 (2002) 407.CrossRefGoogle Scholar
  15. 15.
    J. DONG, T. UEMURA, Y. SHIRASAKI and T. TATE- ISHI, Biomaterials 23 (2002) 4493.CrossRefGoogle Scholar
  16. 16.
    R. Z. LEGEROS and Y. K. LEE, J. Mater. Sci. 39 (2004) 5577.CrossRefGoogle Scholar
  17. 17.
    Y. K. LEE, J. SONG, S. B. LEE, K. M. KIM, S. H. CHOI, C. K. KIM, R. Z. LEGEROS and K. N. KIM, J. Biomed. Mater. Res. 69A (2004) 188.CrossRefGoogle Scholar
  18. 18.
    H. J. MOON, K. N. KIM, K. M. KIM, S. H. CHOI, C. K. KIM, R. Z. LEGEROS and Y. K. LEE, J. Biomed. Mater. Res.. 74A (2005) 497.CrossRefGoogle Scholar
  19. 19.
    D. W. HUTMACHER, Biomaterials 21 (2000) 2529.CrossRefGoogle Scholar
  20. 20.
    T. M. FREYMAN, I. V. YANNAS and L. J. GIBSON, Prog. Mater. Sci.46 (2001) 273.CrossRefGoogle Scholar
  21. 21.
    D. D. BROWN and D. J. GREEN, J. Am. Ceram Soc. 77 (1994) 1467.CrossRefGoogle Scholar
  22. 22.
    F. F. LANGE and K. T. MILLER, Adv. Ceram Mater. 2 (1987) 827.Google Scholar
  23. 23.
    R. BRENZY and D. J. GREEN, J. Am. Ceram Soc. 74 (1991) 1061.CrossRefGoogle Scholar
  24. 24.
    R. BRENZY and D. J. GREEN, J. Am. Ceram Soc. 72 (1989) 1145.CrossRefGoogle Scholar
  25. 25.
    L. J. GIBSON and M. F. ASHBY, Structure and Properties (Pergamon Press, Oxford, U.K., 1988).Google Scholar
  26. 26.
    C. Q. DAM, R. BRENZY and D. J. GREEN, J. Mater. Sci. 5 (1990) 163.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Young-Sang Park
    • 1
    • 2
  • Kyoung-Nam Kim
    • 1
    • 2
    • 3
  • Kwang-Mahn Kim
    • 1
    • 2
    • 3
  • Seong-Ho Choi
    • 1
    • 3
    • 4
  • Chong-Kwan Kim
    • 1
    • 3
    • 4
  • Racquel Z. Legeros
    • 5
  • Yong-Keun Lee
    • 1
    • 2
    • 3
  1. 1.Research Center for Orofacial Hard Tissue RegenerationYonsei University College of DentistrySeoulKorea
  2. 2.Department and Research Institute of Dental Biomaterials and BioengineeringYonsei University College of DentistrySeoulKorea
  3. 3.Brain Korea 21 Project for Medical ScienceYonsei UniversitySeoulKorea
  4. 4.Department of PeriodonticsYonsei University College of DentistrySeoulKorea
  5. 5.Department of Biomaterials and BiomimeticsNew York University College of DentistryNew YorkUSA

Personalised recommendations