Journal of Materials Science

, Volume 41, Issue 13, pp 4227–4232 | Cite as

Microstructure and mechanical behavior of AlSiCuMgNi piston alloys reinforced with TiB2 particles

  • D. G. Zhao
  • X. F. Liu
  • Y. C. Pan
  • Y. X. Liu
  • X. F. Bian


AlSiCuMgNi piston composites reinforced with in-situ TiB2 particles were fabricated by mixing salts reaction process successfully. Microstructures of the composites were observed by mean of scanning electron microscope (SEM) and transmission electron microscope (TEM). X-ray diffraction (XRD) was used to identify the phases in the composites. TiB2 reinforcement grows in equiaxed or near equiaxed shape and the interfaces between reinforcements and matrix are clear. Compared with the matrix alloys, the composites show an obvious aging peak and an incubation time in the hardness. The aging is accelerated in the composites reinforced with TiB2. At room temperature, the ultimate tensile strength (UTS) of the composites increases as the percentage of TiB2 reinforcement increases. When the temperature is beyond 250°C, the ultimate tensile strength of the piston composites decreases sharply. The fracture surfaces of the piston composites are analyzed.


Fracture Surface Ultimate Tensile Strength Matrix Alloy Scripta Mater Mirror Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. MARUYAMA and W. H. HUNT, J. Organomet. Chem. 51 (1999) 59.Google Scholar
  2. 2.
    M. V. KEVORKIJAN, Am. Ceram. Soc. Bull. 59 (1998) 53.Google Scholar
  3. 3.
    M. FUJINE and M. YAMASHITA, J. Jpn. Inst. Light Met. 49 (1999) 564.Google Scholar
  4. 4.
    J. E. ALLISON and G. S. COLE, J. Organomet. Chem 45 (1993) 19.Google Scholar
  5. 5.
    G. NEITE and S. MIELKE, Mater. Sci. Eng. A. 148 (1991) 85.CrossRefGoogle Scholar
  6. 6.
    W. HENNING, G. NETTE and E S. CHMID, Metallurgist. 38 (6) (1994) 451.Google Scholar
  7. 7.
    I. A. IBRAHIM, F. A. MOHAMED and E. J. LAVERNIA, J. Mater. Sci. 26 (1991) 1156.CrossRefGoogle Scholar
  8. 8.
    D. J. LLOYD, Inter. Mater. Rev. 39 (1994) 23.Google Scholar
  9. 9.
    C. F. FENG and L. FROYEN, Scripta Mater. 36 (1997) 467.CrossRefGoogle Scholar
  10. 10.
    Z. Y. MA, J. H. LI, M. LUO and Y. X. GAO, Scripta Mater. 29 (1993) 225.CrossRefGoogle Scholar
  11. 11.
    P. SAHOO and M. J. KOCZAK, Mater. Sci. Eng. A. 144 (1991) 37.CrossRefGoogle Scholar
  12. 12.
    P. DAVIES and J. SHELL, Key. Eng. Mater. 77 (1993) 357.CrossRefGoogle Scholar
  13. 13.
    A. CHRYSANTHOU and G. ERBACCUIO, J. Mater. Sci. 30 (1995) 6339.CrossRefGoogle Scholar
  14. 14.
    X. F. LIU, J. Q. QIAO and Y. X. LIU, Acta Metallurgica Sinica. 40 (2004) 471.Google Scholar
  15. 15.
    S. SURESH, T. CHRISTMAN and S. SUGIMURA, Scripta Mater. 23 (1989) 1599.CrossRefGoogle Scholar
  16. 16.
    M. GUPTA, T. S. SRIVATSAN, F. A. MOHAMED and E. J. LAVERNIA, J. Mater. Sci. 28 (1993) 2245.CrossRefGoogle Scholar
  17. 17.
    T. S. KIM, T. H. KIM, K. H. OH and H. L. LEE, J. Mater. Sci. 27 (1992) 2599.CrossRefGoogle Scholar
  18. 18.
    S. LAKSHMI, L. LU and M. GUPTA, J. Mater. Process. Technol. 73 (1998) 160.CrossRefGoogle Scholar
  19. 19.
    Q. G. ZHANG, H. X. ZHANG and M. Y. GU, Mater. Lett. 58 (2004) 3545.CrossRefGoogle Scholar
  20. 20.
    M. TAYA, K. E. LULAY and D. J. LLOYD, Acta Metallurgica Sinica 27 (1991) 73.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • D. G. Zhao
    • 1
  • X. F. Liu
    • 1
  • Y. C. Pan
    • 1
  • Y. X. Liu
    • 1
  • X. F. Bian
    • 1
  1. 1.The Key Laboratory of Materials Liquid Structure and Heredity, Ministry of EducationShandong UniversityJinanPeople’s Republic of China

Personalised recommendations