Journal of Materials Science

, Volume 41, Issue 1, pp 271–280 | Cite as

Normal ferroelectric to ferroelectric relaxor conversion in fluorinated polymers and the relaxor dynamics

  • Shihai Zhang
  • Rob J. Klein
  • Kailiang Ren
  • Baojin Chu
  • Xi Zhang
  • James Runt
  • Q. M. Zhang


To elucidate the molecular origin of the polarization dynamics in the ferroelectric relaxor poly(vinylidene fluoride—trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer, a broadband dielectric study was carried out in the frequency range from 0.01 Hz to 10 MHz and temperatures from −150°C to 120°C for the terpolymer and a normal ferroelectric P(VDF-TrFE) copolymer. The relaxation processes were also studied using dynamic mechanical analysis. It was shown that in the terpolymer, which was completely converted to a ferroelectric relaxor, there is no sign of the relaxation process associated with the ferroelectric-paraelectric transition which occurs in the P(VDF-TrFE) copolymer. In the copolymer, three additional relaxation processes have been observed. It was found that the relaxation process βa, which was commonly believed to be associated with the glass transition in the amorphous phase, in fact, contains significant contribution from chain segment motions such as domain boundary motions in the crystalline region. In the temperature range studied, the terpolymer exhibits the latter three relaxation processes with the one (termed βr) near the temperature range of βa significantly enhanced. This is consistent with the observation that in conversion from the normal ferroelectric to a ferroelectric relaxor, the macro-polar domains are replaced by nano-polar-clusters and the boundary motions as well as the reorientation of these nano-clusters generate the high dielectric response. The experimental data also reveal a broad relaxation time distribution related for the βr process whose distribution width increases with reduced temperature, reflecting the molecular level heterogeneity in the crystalline phase due to the random introduction of the CFE monomer in the otherwise ordered macro-polar domains. The random interaction among the nano-clusters as well as the presence of the random fields produces ferroelectric relaxor behavior in the terpolymer.


Domain Wall Dynamic Mechanical Analysis Dielectric Spectrum Ferroelectric Relaxor Ferroelectric Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. S. NALWA, (Ed). “Ferroelectric Polymers” (Marcel Dekker, Inc. NY, 1995).Google Scholar
  2. 2.
    M. E. LINES and A. M. GLASS, “Principles and Applications of Ferroelectrics and Related Materials” (Clarendon Press, Oxford, 1977).Google Scholar
  3. 3.
    Y. BAR-COHEN, (Ed). “Electroactive Polymer (EAP) Actuators as Artificial Muscles” (SPIE, Bellingham, WA, 2001).Google Scholar
  4. 4.
    A. J. LOVINGER, Science 220 (1983) 1115.Google Scholar
  5. 5.
    Q. M. ZHANG, V. BHARTI and X. ZHAO, ibid. 280 (1998) 2101.CrossRefGoogle Scholar
  6. 6.
    A. J. LOVINGER, D. D. DAVIS, R. E. CAIS, J. M. CAIS and J. M. KOMETANI, Polymer 28 (1987) 617.CrossRefGoogle Scholar
  7. 7.
    Z. Y. CHENG, Q. M. ZHANG and F. B. BATEMAN, J. Appl. Phys. 92 (2002) 6749.CrossRefGoogle Scholar
  8. 8.
    V. BHARTI, H. S. XU, G. SHANTHI, Q. M. ZHANG and K. LIANG, ibid. 87 (2000) 452.CrossRefGoogle Scholar
  9. 9.
    H. S. XU, Z.-Y. CHENG, D. OLSON, M. TAI, Q. M. ZHANG and G. KAVARNOS, Appl. Phys. Lett. 78 (2001) 2360.CrossRefGoogle Scholar
  10. 10.
    F. BAUER, E. FOOUSSON, Q. M. ZHANG and L. M. LEE, Proc. 11th Int. Symp. Electrets (2002) 355.Google Scholar
  11. 11.
    F. XIA, Z. Y. CHENG, H. S. XU, H. F. LI, Q. M. ZHANG, G. J. KAVARNOS, R. Y. TING, G. ABDEL-SADEK and K. D. BELFIELD, Adv. Mater. 14 (2002) 1574.CrossRefGoogle Scholar
  12. 12.
    T. C. CHUNG and A. PETCHSUK, Macromolecules 35 (2002) 7678.CrossRefGoogle Scholar
  13. 13.
    C. M. ROLAND, J. T. GARRETT, R. CASALINI, D. F. ROLAND, P. G. SANTANGELO and S. B. QADRI, Chem. Mater. 16 (2004) 857.CrossRefGoogle Scholar
  14. 14.
    J. T. GARRETT, C. M. ROLAND, A. PETCHSUK and T. C. CHUNG, Appl. Phys. Lett. 83 (2003) 1190.CrossRefGoogle Scholar
  15. 15.
    R. J. KLEIN, J. RUNT and Q. M. ZHANG, Macromolecules 36 (2003) 7220.CrossRefGoogle Scholar
  16. 16.
    R. J. KLEIN, F. XIA, Q. M. ZHANG, and F. BAUER, J. Appl. Phys. 97 (2005) 094105 submitted.Google Scholar
  17. 17.
    R. J. KLEIN and M. S. THESIS, The Pennsylvania State University, 2004.Google Scholar
  18. 18.
    V. BOBNAR, B. VODOPIVEC, A. LEVSTIK, M. KOSEC, B. HILCZER and Q. M. ZHANG, Macromolecules 36 (2003) 4436.CrossRefGoogle Scholar
  19. 19.
    B. VODOPIVEC, V. BOBNAR, A. LEVSTIK and Q. M. ZHANG, Ferroelectrics 304 (2004) 857.CrossRefGoogle Scholar
  20. 20.
    Z. YU and C. ANG, Appl. Phys. Lett. 84 (2004) 2145.CrossRefGoogle Scholar
  21. 21.
    C. ANG and Z. YU, Adv. Mater. 16 (2004) 979.CrossRefGoogle Scholar
  22. 22.
    Z. YU, C. ANG, L. E. CROSS, A. PETCHSUK and T. C. CHUNG, Appl. Phys. Lett. 84 (2004) 1737.CrossRefGoogle Scholar
  23. 23.
    L. E. CROSS, Ferroelectrics 151 (1994) 305.Google Scholar
  24. 24.
    Idem., ibid. 76 (1987) 241.Google Scholar
  25. 25.
    T. FURUKAWA, Phase Transitions 18 (1989) 143.Google Scholar
  26. 26.
    T. FURUKAWA, M. OHUCHI, A. CHIBA and M. DATE, Macromolecules 17 (1984) 1384.CrossRefGoogle Scholar
  27. 27.
    T. FURUKAWA, Y. TAJITSU, X. ZHANG and G. E. JOHNSON, Ferroelectrics 135 (1992) 401.Google Scholar
  28. 28.
    Y. ISHIDA, S. SAITO, M. ASABINA and H. KAKUTANI, J. Polym. Sci. Part A2 7 (1969) 1405.CrossRefGoogle Scholar
  29. 29.
    S. YANO, ibid. Sci. Part A2 8 (1970) 1057.CrossRefGoogle Scholar
  30. 30.
    K. OMOTE, H. OHIGASHI and K. KOGA, J. Appl. Phys. 81 (1997) 2760.CrossRefGoogle Scholar
  31. 31.
    J. D. FERRY, “Viscoelastic Properties of Polymers” (Wiley, New York, 1980).Google Scholar
  32. 32.
    N. G. MCCRUM, B. E. READ and G. WILLIAMS, “Anelastic and Dielectric Effects in Polymeric Solids” (Wiley, London, 1967).Google Scholar
  33. 33.
    T. YAGI, M. TATEMOTO and J. SAKO, Polym. J. 12 (1980) 209.CrossRefGoogle Scholar
  34. 34.
    V. BOBNAR, B. VODOPIVEC, A. LEVSTIK, Z. Y. CHENG and Q. M. ZHANG, Phys. Rev. B 67 (2003) 94205.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Shihai Zhang
    • 1
    • 4
  • Rob J. Klein
    • 1
  • Kailiang Ren
    • 1
  • Baojin Chu
    • 1
  • Xi Zhang
    • 1
  • James Runt
    • 1
  • Q. M. Zhang
    • 1
    • 2
    • 3
  1. 1.Materials Research InstituteThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  4. 4.GE Global ResearchNiskayunaUSA

Personalised recommendations