Journal of Materials Science

, Volume 41, Issue 6, pp 1827–1833 | Cite as

EPR and TPR investigation of the redox properties of vanadia based ceria catalysts

  • E. Abi-Aad
  • J. Matta
  • D. Courcot
  • A. Aboukaïs


Vanadium cerium oxides, with different V/Ce atomic ratios, were prepared using the impregnation method and calcined under air at 500°C. Physicochemical studies have shown that at low vanadium content, polymeric V-O-V chains are stabilized on the ceria surface. Increasing the vanadium content tends to favor the formation of the CeVO4 and V2O5 phases. The redox properties of these oxides have been simultaneously investigated by TPR/TPO and EPR techniques. V-O-V chains and V2O5 species are more easily reducible than the CeVO4 phase. The reduction of V2O5 to V2O3 proceeds in several steps, the intermediate species being V6O13, VO2 and V5O9. The reduction of V2O5 species interacting with ceria support leads to VO oxide. EPR measurements performed at T = −269°C have permitted to observe progressively different signals of V4+ in addition to vanadium ions in V2+ (3d3) paramagnetic configuration. This attribution is based on an EPR signal at g = 3.956 with eight well resolved hyper fine lines (A = 96 Gauss), which may be attributed to the perpendicular components of one of the fine transitions corresponding to the V2+ spectrum. At high reduction temperature, CeVO4 phase leads in one step to CeVO3 and a continuous and partial reduction of CeO2 into Ce2O3 is observed. Re-oxidation process shows that polymeric V-O-V chains, easily reducible, are hardly re-oxidized whereas V2O5 species, present in the high vanadium loading samples, are easily re-oxidized at low temperatures. However, redox processes seem to be reversible.


Ceria Ce2O3 V2O5 Cerium Oxide Vanadium Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. AHLSTRÖM and A. ODENBRAND, Appl. Catal. 60 (1990) 157.Google Scholar
  2. 2.
    L. LIETTI and P. FORZATTI, J. Catal. 147 (1994) 241.CrossRefGoogle Scholar
  3. 3.
    R. KO R N E R, N. RICKEN and I. RIESS, J. Sol State Chem. 78 (1989) 136.Google Scholar
  4. 4.
    J. MATTA, E. ABI-AAD, D. COURCO T and A. ABOUKAÏS, J. Therm. Anal. Calorim. 66 (2001) 717.CrossRefGoogle Scholar
  5. 5.
    J. MATTA, D. COURCOT, E. ABI-AAD and A. ABOUKAÏS, Chem Mater. 14 (2002) 4118.CrossRefGoogle Scholar
  6. 6.
    J. MATTA, E. ABI-AAD, D. COURCOT and A. ABOUKAÏS, to be published.Google Scholar
  7. 7.
    E. ABI-AAD, R. BECHARA, J. GRIMBLO T and A. ABOUKAÏS, J. Chem. Soc. Faraday Trans. 5 (1993) 793.Google Scholar
  8. 8.
    C. DECARNE, E. ABI-AAD, B. G. KO STYUK, V. V. LUNIN and A. ABOUKAÏS, J. Mater. Sci., 39 (2004) 2349 and references therein.Google Scholar
  9. 9.
    F. ROOZEBOOM, M. C. HAZELEGER, J. A. MOULIJN, J. MEDEMA, V. H. J. DE BEER and P. J. GELLINGS, J. Phys. Chem. 84 (1980) 2783.CrossRefGoogle Scholar
  10. 10.
    H. YOKOKAWA, N. SAKAI, T. KAWADA, and M. DOKIYA, J. Am. Ceram. Soc. 73 (1990) 649.CrossRefGoogle Scholar
  11. 11.
    R. COUSIN, D. COURCOT, E. ABI-AAD, S. CAPELLE, J-P. AMOUREUX, M. DOURDIN, M. GUELTON and A. ABOUKAÏS, Coll and Surf, A 158 (1999) 43.Google Scholar
  12. 12.
    C. BINET, A. JADI, J. C. LAVALLEY and M. BOUT ONNET-KIZLING, J. Chem. Soc. Faraday Trans. 88(14) (1992) 2079.CrossRefGoogle Scholar
  13. 13.
    L. KUNDAKOVIC and A. FLYTZANI-STEPHANOPOULOS, Appl. Catal. A: General 171 (1998) 329.CrossRefGoogle Scholar
  14. 14.
    H. C. YAO and Y. F. YU YAO, J. Catal. 86 (1984) 254.CrossRefGoogle Scholar
  15. 15.
    E. GIAMELLO, Catal. Today 41 (1998) 239.CrossRefGoogle Scholar
  16. 16.
    C. M. BRODBECK and R. R. BUKREY, Phys. Rev. 24 (1981) 2334.Google Scholar
  17. 17.
    D. L. GRISCOM, J. Non Cryst. Solids 40 (1980) 211.CrossRefGoogle Scholar
  18. 18.
    J. M. SCHREURS, J. Chem. Phys. 69 (1978) 2151.CrossRefGoogle Scholar
  19. 19.
    R. D. DOWSING and J. F. GIBSON, ibid. 50(1) (1969) 294.Google Scholar
  20. 20.
    E. A. ZHILINSKAYA and V. N. LAZUKIN, J. Non-Cryst. Solids 50 (1982) 163.CrossRefGoogle Scholar
  21. 21.
    V. N. LAZUKIN, I. V. CHEPELEVA, E. A. ZHILINSKAYA and A. P. CHERNOV, Phys. Stat. Sol. B 69 (1975) 399.Google Scholar
  22. 22.
    E. ABI-AAD, A. BENN ANI, J.-P. BONNELLE and A. ABOUKAÏS, J. Chem. Soc. Faraday Trans. 914 (1995) 99.Google Scholar
  23. 23.
    E. ABI-AAD, D. COURCOT, A. ABOUKAÏS, M. BAERNS, A. BRUCKNER, M. GUELTON and J. C. VEDRINE, Catal. Today 56 (2000) 371.Google Scholar
  24. 24.
    A. D AVIDSON and M. CHE, J. Phys. Chem. 96 (1992) 9906.CrossRefGoogle Scholar
  25. 25.
    L. D. BOGOMOLOVA, A. N. KHABAROVA, E. V. KLIMASHINA, N. A. KRASILNIKOVA and V. A. JACKIN, J. Non Cryst. Solids 103 (1988) 319.CrossRefGoogle Scholar
  26. 26.
    G. CENTI, S. PARATHONER, F. TRIFIRO, A. ABOUKAÏS, C. F. AÏSSI and M. GUELTON, J. Phys. Chem. 96 (1992) 2617.CrossRefGoogle Scholar
  27. 27.
    G. M. ZHIDOMIROV, Interpretation of Complex EPR Spectra Nauca, Moscow (1975).Google Scholar
  28. 28.
    E. ABI-AAD, E. A. ZHILISKAYA and A. ABOUKAÏS, J. Chim. Phys. 96 (1999) 1519 and references therein.Google Scholar
  29. 29.
    E. ABI-AAD, R. COUSIN, C. PRUVOST, D. COURCOT, C. RIGAUDEAU, R. NOIROT and A. ABOUKAÏS, Topics in Catalysis 16/17 (2001) 263.CrossRefGoogle Scholar
  30. 30.
    R. FLOUTY, E. ABI-AAD, S. SIFFERTandA. ABOUKAÏS, Appl. Catal. B 46 (2003) 145.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • E. Abi-Aad
    • 1
  • J. Matta
    • 2
  • D. Courcot
    • 1
  • A. Aboukaïs
    • 1
  1. 1.Laboratoire de Catalyse et Environnement, E.A.2598Université du Littoral-Côte d'OpaleDunkerqueFrance
  2. 2.Institut de Recherche IndustrielleBeyrouthLiban

Personalised recommendations