Journal of Materials Science

, Volume 41, Issue 6, pp 1805–1812 | Cite as

Seeded growth of hydroxyapatite in simulated body fluid

  • N. Spanos
  • D. Y. Misirlis
  • D. G. Kanellopoulou
  • P. G. Koutsoukos


The precipitation of calcium phosphates was investigated, in simulated body fluid (SBF), pH 7.40 and 37°C. The kinetics of the mineral phase forming in the SBF was measured using the constant supersaturation method. The approach provides a detailed investigation in the processes taking place in the SBF which is widely used for the study of biomineralization. The pH adjustment was done by a pH-stat instead of Tris-Buffer [Tris (hydroxymethyl) Aminomethane] to avoid the presence of organic soluble compounds. The stability of SBF was investigated and the stable supersaturated solutions were seeded. The technique of seeded precipitation was employed for the achievement of accurate and reproducible kinetics measurements. The crystal growth experiments in which SBF solutions of variable supersaturations were seeded with hydroxyapatite [Ca5(PO4)3OH, HAP] crystals showed that the precipitation of calcium phosphates took place exclusively on specific active sites provided on the surface of the synthetic seed crystals. The crystal growth mechanism showed that the process was controlled by surface diffusion. The phase formed was HAP in the lattice of which CO32− and Mg2+ ions were incorporated. SBF was the source of these ions. Moreover it was found that the less stable calcium phosphate dihydrate (CaHPO4·2H2O, DCPD) may form as a transient phase hydrolyzing rapidly into the more stable HAP. Morphological examination of the carbonated apatites formed in the SBF showed appreciable aggregation.


Calcium Phosphate Simulated Body Fluid DCPD Synthetic Seed Simulated Body Fluid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. NANCOLLAS, in “Biomineralization, Chemical and Biochemical Perspectives,” edited by S. Mann, J. Webb and R.J.P. Williams (VCH Publ. Weinheim 1989) p. 157.Google Scholar
  2. 2.
    P. G. KOUTSOUKOS, in “Calcium Phosphates in Biological and Industrial Systems,” edited by Z. Amjad (Kluwer Acad. Publ., Boston, 1988) p. 145.Google Scholar
  3. 3.
    T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J Biomed Mater Res. 24 (1990) 721.Google Scholar
  4. 4.
    S. V. DOROZHKIN, E. I. DOROZHKINA and M. EPPLE, J. Appl. Biomate. & Biomecha. 1 (2003) 200.Google Scholar
  5. 5.
    S. V. DOROZHKIN and E. I. DOROZHKINA, Colloids and Surfaces A: Physicochem. Eng. Aspects 215 (2003) 191.CrossRefGoogle Scholar
  6. 6.
    Idem., ibid. 223 (2003) 231.Google Scholar
  7. 7.
    H.-M. KIM, T. MIYAZAKI, T. KOKUBO and T. NAKAMURA, in “Bioceramics 13,” edited by S. Giannini and A. Moroni (Trans. Tech Publications 2001) Vol. 47 p. 192.Google Scholar
  8. 8.
    A. BIGI, E. BOANINI, S. PANZAVOLTA and N. ROVERI, Biomacromolecules 1 (2000) 752.CrossRefGoogle Scholar
  9. 9.
    T. KOKUBO, H.-M. KIM, M. KAWASHITA and T. NAKAMURA, Z. Kardiol. 90 (2001) III86.CrossRefGoogle Scholar
  10. 10.
    A. RAMILA and M. VALLET-REGI, Biomaterials 22 (2001) 2301.Google Scholar
  11. 11.
    M. UCHIDA, H.-M. KIM, T. KOKUBO, F. MIYAJI and T. NAKAMURA, J. Am. Ceram. Soc. 84 (2001) 2041.Google Scholar
  12. 12.
    E. RIVERA-MUNOZ, W. BROSTOW, R. RODRIGUEZ and V. M. CASTANO, Mat. Res. Innovation 4 (2001) 222.Google Scholar
  13. 13.
    J. M. GOMEZ-VEGA, A. HOZUMI, H. SUGIMURA and O. TAKAI, Adv. Mater. 13 (2001) 822.CrossRefGoogle Scholar
  14. 14.
    H. TAKADAMA, H.-M. KIM, T. KOKUBO and T. NAKAMURA, J. Biomed. Mat. Res. 57 (2001) 441.Google Scholar
  15. 15.
    S. FUJIBAYASHI, T. NAKAMURA, S. NISHIGUCHI, J. TAMURA, M. UCHIDA, H.-M. KIM and T. KOKUBO, ibid. 56 (2001) 562.Google Scholar
  16. 16.
    T. MIYAZAKI, H.-M. KIM, T. KOKUBO, F. MIYAJI, H. KATO and T. NAKAMURA, J. Mater. Sci: Mater. Med. 12 (2001) 683.CrossRefGoogle Scholar
  17. 17.
    C. SANTOS, Z. B. LUKLINSKA, R. L. CLARKE and K. W. M. DAVY, ibid. 12 (2001) 565.Google Scholar
  18. 18.
    X. Y. YUAN, A. F. T. MAK and J. L. LI, J. Biomed. Mat. Res. 57 (2001) 140.Google Scholar
  19. 19.
    K. SATO, T. KOGURE, Y. KUMAGAI and J. TANAKA, J. Coloidl Interf. Sci. 240 (2001) 133.Google Scholar
  20. 20.
    H.-M. KIM, K. KISHIMOTO, F. MIYAJI, T. KOKUBO, T. YAO, Y. SUETSUGU, J. TANAKA and T. NAKAMURA, J. Mater. Sci. Mater. Med. 11 (2000) 421.Google Scholar
  21. 21.
    B. TOMAZIC and G. H. NANCOLLAS, J. Coll. Interf. Sci. 50 (1975) 451.Google Scholar
  22. 22.
    B. TOMAZIC, M.B. TOMSON and G.H. NANCOLLAS, Calcified Tissue Research 19 (1976) 263.Google Scholar
  23. 23.
    A. L. BOSKEY and A. S. POSNER, J. Phys. Chem. 80 (1976) 40.CrossRefGoogle Scholar
  24. 24.
    J. C. ELLIOTT, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier, 1994).Google Scholar
  25. 25.
    P. G. KOUTSOUKOS, Z. AMJAD, M. B. TOMSON and G. H. NANCOLLAS, J. Am. Chem. Soc. 102 (1980) 1553.CrossRefGoogle Scholar
  26. 26.
    M. B. TOMSON and G. H. NANCOLLAS, Science 200 (1978) 1059.Google Scholar
  27. 27.
    Z. AMJAD, P. G. KOUTSOUKOS and G. H. NANCOLLAS, J. Coll. Interf. Sci. 101 (1984) 250.CrossRefGoogle Scholar
  28. 28.
    J. C. HEUGHEBAERT, S. ZAWACKI and G. H. NANCOLLAS, ibid. 135 (1990) 20.CrossRefGoogle Scholar
  29. 29.
    R. G. BATESM, pH Determination (J. Wiley, New York, 1967)Google Scholar
  30. 30.
    P. G. KOUTSOUKOS, in Calcium Phosphates in Biological and Industrial Systems, edited by Z. Amjad (Kluwer Acad. Publ., Boston, 1998) p. 41.Google Scholar
  31. 31.
    G. PAPELIS, K. F. HAYES and J. O. LECKIE, HYDRAQL, A Program for the Computation of Chemical Equilibrium Composition of Aqueous Batch Systems Including Surface Compexation Modelling of Ion Association at the Oxide/Solution Interface. Technical Report No. 306 (Stanford University, Stanford, CA, 1988).Google Scholar
  32. 32.
    M. DALPI, E. KARAYIANNI and P. G. KOUTSOUKOS, J. Chem. Soc. Faraday Trans. 89 (1993) 965.Google Scholar
  33. 33.
    J. KAPOLOS and P. G. KOUTSOUKOS, Langmuir 15 (1999) 6557.CrossRefGoogle Scholar
  34. 34.
    N. SPANOS and P. G. KOUTSOUKOS, J. Mater. Sci. 36 (2001) 573.CrossRefGoogle Scholar
  35. 35.
    G. H. NANCOLLAS and M. S. MOHAN, Archs. Oral Biol. 15 (1970) 731.CrossRefGoogle Scholar
  36. 36.
    P. G. KOUTSOUKOS and G. H. NANCOLLAS, J. Crys. Grow. 53 (1981) 10.Google Scholar
  37. 37.
    K. SANGWAL, in “Elementary Crystal Growth” edited by K. Sangwal (Saan Publishers, Lublin, Poland, 1994) p. 83.Google Scholar
  38. 38.
    International Center for Diffraction Data, JCPDS, File Card No 9-0430 (1996).Google Scholar
  39. 39.
    D. G. A. NELSON and J. D. B. FEATHERSTONE, Calcif. Tissue Int. 34 (1982) S69.Google Scholar
  40. 40.
    J. BARRALET, S. BEST and W. BONEFIELD, J. Biomed. Mater. Res. 41 (1998) 79.CrossRefGoogle Scholar
  41. 41.
    X. GUOFENG, A. A. ILHAN and J. T. GROVES, J. Amer. Chem. Soc. 123 (2001) 2196.Google Scholar
  42. 42.
    D. TADIC, F. PETERS and M. EPPLE, Biomaterials 23 (2002) 2553.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • N. Spanos
    • 1
    • 2
  • D. Y. Misirlis
    • 3
  • D. G. Kanellopoulou
    • 2
    • 3
  • P. G. Koutsoukos
    • 2
    • 3
  1. 1.School of Science and TechnologyHellenic Open UniversityPatrasGreece
  2. 2.Institute of Chemical Engineering and High Temperature Chemical ProcessesPatrasGreece
  3. 3.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations