Advertisement

Journal of Materials Science

, Volume 41, Issue 6, pp 1697–1703 | Cite as

Combustion synthesis of AlN whiskers

  • Huabin Wang
  • Derek O. Northwood
  • Jiecai Han
  • Shanyi Du
Article

Abstract

Long and coarse AlN whiskers comprising more than 80 vol% of the combustion product have been successfully produced through combustion synthesis. Addition of ammonia halides can accelerate the vaporization of Al, and retard the deposition rate of AlN, with the result that the growth of AlN whiskers is markedly promoted. A growth model for a spiral whisker by a helical screw dislocation mechanism, or a combination mechanism of a helical screw dislocation and the VLS process, is proposed. Periodic interactions of vacancies and the tip of a screw dislocation cause the growth of a spiral whisker in the model. Under an atmosphere of supersaturated “AlN vapor,” the growth of whiskers along the axial direction slows down and gradually arrests, due to the limitation of the diffusion distance. A series of deposition sites are then produced at regular, isolated locations along the center line on the prismatic plane, and eventually cause the formation of dendritic whiskers.

Keywords

Combustion Deposition Rate Growth Model Halide Center Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. SLACK and T. F. MCNELLY, J. Crystal. Growth 34 (1976) 263.Google Scholar
  2. 2.
    Y. BAIK and R. A. L. DREW, Key. Eng. Mater. 122–124 (1996) 553.Google Scholar
  3. 3.
    A. W. WEIMER, G. A. COCHRAN, G. A. EISMAN, J. P. HENLEY, B. D. HOOK and L. K. MILLS, J. Am. Ceram. Soc. 77 (1994) 3.CrossRefGoogle Scholar
  4. 4.
    H. ITO, H. MORIKAWA and K. SUGIGAMA, J. Crystal. Growth 94 (1989) 387.Google Scholar
  5. 5.
    H. ZHOU, H. CHEN, Y. LIU and Y. WU, J. Mater. Sci. 35 (2000) 471.Google Scholar
  6. 6.
    C. M. DRUM, J. Appl. Phys. 36 (1965) 816.Google Scholar
  7. 7.
    Idem., ibid. 36 (1965) 824.Google Scholar
  8. 8.
    J. A. HABER, P. C. GIBBONS and W. E. BUHRO, Chem. Mater. 10 (1998) 4062.CrossRefGoogle Scholar
  9. 9.
    P. G. CACCERS and H. K. SCHMID, J. Am. Ceram. Soc. 77 (1994) 977.Google Scholar
  10. 10.
    W. MIAO, Y. WU and H. ZHOU, J. Mater. Sci. 32 (1997) 969.CrossRefGoogle Scholar
  11. 11.
    H. ZHOU, H. CHEN, Y. WU, W. MIAO and X. LIU, ibid. 33 (1998) 4249.Google Scholar
  12. 12.
    R. FU, H. ZHOU, L. CHEN and Y. WU, Mater. Sci. Engng. 266A (1999) 44.Google Scholar
  13. 13.
    W. JUNG, T. LEE and B. MIN, Mater. Lett. 57 (2003) 4237.CrossRefGoogle Scholar
  14. 14.
    S. W. BRADSHAW and J. L. SPICER, J. Am. Ceram. Soc. 82 (1999) 2293.Google Scholar
  15. 15.
    K. LEE, D. AHN and Y. KIM, ibid. 83 (2000) 1117.Google Scholar
  16. 16.
    J. SHIN, D. AHN, M. SHIN and Y. KIM, ibid. 83 (2000) 1021.Google Scholar
  17. 17.
    H. WANG, J. HAN, Z. LI and S. DU, J. European Ceram. Soc. 21 (2001) 2193.Google Scholar
  18. 18.
    G. JIANG, H. ZHUANG, J. ZHANG and M. RUAN, J. Mater. Sci. 35 (2000) 57.CrossRefGoogle Scholar
  19. 19.
    Idem., ibid. 35 (2000) 63.CrossRefGoogle Scholar
  20. 20.
    E. F. RIEBLING and W. W. WEBB, Science 126 (1957) 309.Google Scholar
  21. 21.
    W. W. WEBB, R. D. DRAGSDORF and W. D. FORGENG, Phys. Rev. A 108 (1957) 498.Google Scholar
  22. 22.
    D. R. VEBLEN and J. E. POST, Am. Mineral. 68 (1983) 790.Google Scholar
  23. 23.
    G. W. SEARS, Acta Metallurgica 3 (1955) 361.Google Scholar
  24. 24.
    G. THOMAS and M. J. WHELAN, Phil. Mag. 8 (1959) 511.Google Scholar
  25. 25.
    S. AMELINCKX, W. BONTINCK, W. DEKEYSER and F. SEITZ, ibid. 8 (1957) 355.Google Scholar
  26. 26.
    J. P. HIRTH and J. LOTHE, in “Theory of Dislocations” (McGraw-Hill Book Company, New York, 1968) p. 390.Google Scholar
  27. 27.
    W. W. WEBB, J. Appl. Phys. 36(1) (1965) 214.CrossRefGoogle Scholar
  28. 28.
    Idem., ibid. 33(6) (1962) 1961.CrossRefGoogle Scholar
  29. 29.
    G. A. SLACK, R. A. TANZILLI, R. O. POHL and J. W. VANDERSANDE, J. Phys. Chem. Solids 48 (1987) 641.Google Scholar
  30. 30.
    J. H. HARRIS, R. A. YOUNGMAN and R. G. TELLER, J. Mater. Res. 5 (1990) 1763.Google Scholar
  31. 31.
    R. DE WIT, Phys. Rev. 116 (1959) 592.Google Scholar
  32. 32.
    C. C. EVANS, in “Whiskers” (Mills & Boon Limited, London, 1972) p. 14.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Huabin Wang
    • 1
  • Derek O. Northwood
    • 1
  • Jiecai Han
    • 2
  • Shanyi Du
    • 2
  1. 1.Department of MechanicalAutomotive and Materials Engineering, University of WindsorCanada
  2. 2.Center for Composite MaterialsHarbin Institute of TechnologyHarbinPeople's Republic of China

Personalised recommendations